
WuttpTHn
PnoposED
SCSI-2
WrnnBusHas
AnvexrAGES,
IrAmo
CHeIIENGES
Soptwnnn
DnsrcNERS.

GEOROE HAHN
Adaptec Inc., 691 S. Milpitas Blvd.,
Milpitas, CA 95035; (408) 945-8600.
MARI{ S. GORDON
Digital Finesse Inc., 355 W. Olive Ave.,
Ste. 105, Sunnyvale, CA 94086;
(408) 737-9156.

Reprinted with permission from ELECTRONIC DESIGN - December 14, 1989

DESIGN APPLICATIONS

Bn CInEFUTWHEN WRITING
SCSI.?WIIN BUS SOT'TIVARE

he proposed SCSI -2
ANSI standard adds
numerous features to
the original SCSI speci-
f icat ion. Among the
more useful is a wider
data bus called Wide
Bus, which transfers 8-
. 16-. or 32-bit data to

and from SCSI peripherals. The ad-
vantages of the Wide Bus come with
some problems, though, including
accounting for the skew between the
two cables used for data byte trans-
fers, proper ordering of bytes in the
buffer containing sector data, prop-
er negotiation for bus width, deter-
mining when a transfer is complete,
and handling parity. Designers must
solve these problems in the algo-
rithms that manage Wide Bus data
transfers at the controller level.

The proposed SCSI-2 Wide Bus
consists of two cables (Fig. 1). Many
of the software requirements of
SCSI derive from the fact that data
transfers on the cables need not be
synchronized, creating a possible
skew between them. The A cable is
identical to SCSI-1's single cable, so
SCSI-I and -2 equipment can coexist
in a system. The A cable's 50 lines
carry a 9-bit data bus (8 data bits and

SCSI-2 bus A cable (50.wire)

SCSL2 bus B cable (68-whe)

1. THE PR0POSED SCSI'2 wirle bus standard uses two cables: an A cable that carries
the first 8 bits of data, and a B cable that can carry 24 bits for a total bus width of 32 bits.

1 parity bit), nine control signals, a
resistor-terminator power line, and
ground lines.

Two of the nine control signals are
handshake lines: Request (REQ) and
Acknowledge (ACK). A target as-
serts REQ when it's ready to receive
or transmit one data byte; an initia-
tor asserts ACK to indicate that a 1-
byte data transfer is complete. Note
that the target always controls the
data transfer process. It starts a
transfer by assert ing REQ and
awaits an ACK from the initiator pri-
or to commencing another single-
byte transaction.

Containing 68 pins, the B cable car-
ries 24 data and 3 parity lines, REQB
and ACKB control signals, its own
resistor-terminator power signals,
and ground lines. The data lines are
organized as three sets of 8, each
with its own parity bit. Separate
REQB and ACKB handshake lines
are defined because the B cable's
Iength may be different than the A
cable. With a set of handshake lines
on each cable, the skew between
handshake signals and data lines on
any one cable is minimized. This is
necessary if SCSI-1 and -2 equipment
are going to coexist.

In a SCSI-2 system, each target/

f|I({nrffiIllrf,frITinKr

SCSI.2 SOFTWARE

Byte0 Byre2 Byre4 Byre6 Bytel-3 Bg\1\0ueuunbyre
BE0/A0Km___-n_n_

Eytei Byte3 ByleS ByteT Byleil-2 Byleil

Byreo Byle2
tal

Byte4 Byte 6 Byle N-3 Eyte l{-l.-Ddayed byte N-1
RE0/ACKm___R____

i ayrrr Byh3 Byre5 Byret I oyrru2 Bytel{
RE0B/A0KB ru - - -.t- ---r.

-1-l-l-
--

r \ I i
ThrotA --ru---

DelayA
tu

initiator pair must negotiate for the
width of the data bus. The negotia-
tion process that chooses a particu-
lar data bus width is a factor soft-
ware designers must consider.

Only the A cable is used for an 8-bit
bus width. For a 16-bit bus width,
even bytes (0 ,2,4, etc.)move on the A
cable as odd bytes (1, 3, 5, etc.) pass
along the B cable. For 32-bit data,
bytes 0, 4, and so on are transferred
on the A cable, while byte s I,2,3, 5, 6,
7, and so on are sent on the B cable.
Because the B cable contains 24 data
and 3 parity signal lines, 2- or 3-byte
transfers are made on this cable in
one transaction (one REQB and one
ACKB).

Because the two cables need not
be synchronized, dala bytes trans-
ferred on one cable may lead or lag
those moving on the other cable-a
condition known as skew. For in-
stance, if byte N-1 begins transfer-
ring before byte N-2, byte N-1 be-
comes an overrun byte (Fig. 2a).

Skew is very likely if the cables are
of different lengths, which is made
possible by the proposed SCSI-Z
standard. This can lead to two prob-
lems: determining the correct order
of transferred bytes at the receiving
end and knowing when the transfer
is complete. The controlling soft-
ware must be able to handle both sit-
uations, making debugging difficult.

To ensure that the data is received
in the proper order, the control soft-
ware can prevent skew by appropri
ately controlling the REQ/REQB

(target) or ACK/ACKB (initiator)
handshake signals. This process is
called throttling. Alternatively, the
software can manage the problem by
skew counting, which is to maintain
a running tally of the skew. Throt-
tling, which facilitates debugging, is
an important feature of test equip-
ment. The technique can also be de-
signed into the hardware and firm-
ware for a controller or other SCSI
device, but the reduced data
throughput caused by throttling is
generally unacceptable.

Throttling requires specialized
hardware that keeps track of which
cable transferred the last data byte
rELEcrRoNIc DESIGN,
Sept. 1/1, p. 73). The
hardware generates
ThrotA and DelayA
signals i f cable A
leads cable B by more
that one data byte. If
cable B leads cable A,
the circuitry gener-
ates ThrotB and De-
layB. Both signals
are active high, with
their states con-
trolled by the active
edges of REQ/ACK
andREQB/ACKB.

In the example
where N-1 is the
overrun byte, ThrotA
goes high when the
REQ/ACK signal as-
sociated with byte N-
3 goes hieh (Fig. 2b).

2. BECAUSE SCSI'2's CABLES neeil not be synchronized, data on one cable nay
lead or lag data transmitted on the other cable, a condition known as skew (a). Using a
throttling technique ensures that the data bytes will be received in the proper orddr (b).

DelayA goes high when REQiACK
goes high again. DelayA gates the
REQ/ACK signal onto the SCSI bus,
preventing REQ or ACK from going
active until the next active edge of
REQB/ACKB. This next active edge
of REQB/ACKB causes ThrotA to
go low, forcing DelayA low.

By preventing the occurrence of
either REQ or ACK, the throttling
circuitry prevents the occurrence of
the other. Consequently, the hand-
shaking used in both the target and
initiator roles enables designers to
throttle a data transfer by suppress-
ing one of the two handshaking sig-
nals-the other end of the link sup-
presses the other signal. Thus, throt-
tling synchronizes the two cables.

If the need for maximum perfor-
mance eliminates throttling as an al-
ternative, the control software must
track the number of bytes trans-
ferred on each cable, as well as each
byte's arrival time. The system can
then derive the skew count from this
information, which is the difference
between the number of transfers
made on the A cable (one REQ/ACK
sequence per transfer) and the num-
ber made on the B cable (one REQB/
ACKB sequence per transfer). As a
measure of the amount by which one
cable leads or lags the other, skew
count can help in the proper ordering
oftransferred bytes and in determin-

3. FOR lG AND 32'BIT WIDE BUSES, tr'.
location in which data bytes are stored in the buffer depends
on which cable carried the data and how wide the bus is.

lilemory bulfer Memory butfer

0
1

2

J

4

c

6

7

n-l

n

A cable

I cable

32.bir

frfimTff{IrfrfiIriltrr

SGSI.z SOFTWARE

ing when a transfer is complete.
The skew count, however, isn't

necessarily the same as the number
of bytes sent on the A cable, less the
number sent on the B cable. For a 32-
bit bus, each REQ/ACK sequence
accompanies a l-byte transfer, while
every REQB/ACKB sequence is as-
sociated with a 3-byte transfer. This
discussion considers the case of a 16-
bit Wide Bus, in which the number of
bytes sent on the A cable less the
number sent on the B cable is identi-
cal to the skew count.

To improve performance, SCSI
systems often buffer data bytes at
the receiving end of the SCSI cable.
For reads, buffering typically takes
place at the host end of the cable; for
writes, it's generally at the drive end.
The algorithm that controls the byte
order must also account for buffer-
ing.

For an S-bit bus, all of the bytes
come from the A cable and are stored
in the order received. For 16- and 32-
bit busses, the offset at which incom-
ing bytes are stored from the begin-
ning of the buffer depends on the ca-
ble from which a byte came and the
width of the SCSI data bus (Fig. 3).
Thus, the algorithm must consider
each byte's source as well as the rela-
tive skew of the cables.

A Warnier-Orr diagram high-
lights the prominent features of an
example algorithm (FiS. D.This is
for an asynchronous 16-bi t bus,
whereby even bytes are transferred
on the A cable and odd bytes are
transferred on the B cable.

In the diagram's upper left corner
is the index, or the offset within the
buffer at which the next byte from
each cable will be stored. The A index
is initialized to zero, and the B index
to 1. At the center of the leftmost
brace is a loop that constantly checks
for Command Complete (a second al-
gorithm determines command com-
pletion). The loop executes as many
times as necessary, therefore the C
in the parentheses is a variable.

Within the command completion
loop are two "if" statements: Byte
Available from A and Byte Available
from B. Based on conditions sneci-
fied at the bottom of the diagram, the
"if" statements look for REQ assert-

ed and REQB asserted, respectively.
The statements are loops that exe-
cute 0 or 1 time, depending on the
condition specified.

When the condition in one of the
"if" statements is satisfied, the algo-
rithm executes a series of tasks,
which are in the rightmost brace of
the Warnier-Orr diagram. These
tasks involve the following: reading
the incoming byte, performing the
REQ/ACK handshake protocol,
writing the byte to the buffer at the
appropriate index, and incrementing
the index value.

The algorithm loops continuously
through the tests for Cominand
Complete, Byte Available from A,
and Byte Available from B, in that
order, until the condition for Com-
mand Complete is met. Thus, if Byte
Available from A is true, the algo-
rithm executes the statements asso-
ciated with this "if" statement, then
goes to Byte Available from B. A
true result there causes the execu-

tion of the corresponding statements
and then an evaluation of Command
Complete.

This sample algorithm is for an ini-
tiator. For instance, the algorithm
could be used when a host is placing
bytes received from a disk controller
or other SCSI target device into a
buffer. The algorithm for a target is
simi lar: REQ/REQB and ACK/
ACKB are transposed and the Com-
mand Complete loop is replaced by
one that determines if all of the bytes
were transferred.

The next problem is how to deter-
mine when a data transfer is com-
plete. One obvious value to check is
skew count. Because it's the differ-
ence between the number of trans-
fers made on the A cable and those
on the B cable, the skew count will be
zero when a transfer is complete. It
may also be zero, however, when a
transfer is partially complete, as
when an equal number of transfers
have occurred on both cables. This

Seclion A:

Initialhe I cable byle inder lo 0

Inilialhe B cable byle index to 1

Command Complele
(0,c)?1

hndition statements:
1) Iransfer is not complele.
2) REo is assedcd.
3) Rf0B is aseded.

[iead
blre lrom A cabh

I
AssertACl(sisnal

1
Wailfor REO lo bedeasserted

\ DeassertACKsignal

| *,n, ort, *,0 outler al A index

[_luement
A blre inder by 2 (4for32.bit)

fieao
bne (l ror l2-bil) lrom B

I
AsenAGIBsional

i WailforREOBtobedeasserted

\
DeasertACl0sional

I
l{rite bfle (3lot 32.bit) al B index

L
lncremenl B blle inder by 2 (4 for 32-bit)

Byle Available from A
(0,1)?2

Byle Available from B
(0,1)?3

I 4. A TYPICAL BUFFER PLACEMENT AIG0RITHM inclurles conrlition
I statements to determine when REQ or REQB is asserted.

filfiF]rfif{IrirfiTnE|

SCSI.z SOFTWARE

may happen repeatedly if a transfer
proceeds in lock step. Thus, a skew
count of zero is a necessary but in-
sufficient condition for checking
command completion.

Another measure of a completed
SCSI transfer is the Command Com-
plete message that's sent from the
target to the initiator. Consider that
the least significant byte of all mes-
sages is always transferred on the A
cable. In the case of a Command
Complete message, which has a val-
ue of zero, there are no further mes-
sage bytes. In messages that do have
additional bytes, the first byte must
be nonzero.

The SCSI specification prohibits
the sending of a Command Complete
message until all bytes are sent on
both cables. This restriction pre-
vents the Command Complete mes-
sage on the A cable from leading the
last data bytes moving across the B
cable. If the two cables are of vastlv

different lengths, however, the cir-
cuitry at the receiving end might ac-
cept the Command Complete mes-
sage before processing the last data
bytes transferred on the B cable.

Thus, the algorithm that deter-
mines when a data transfer is done
must contain two conditions:
1. A Command Complete message
must be received on the A cable, indi-
cating that all of the bytes were
transferred on this cable.
2. The skew count must be zero. indi-
cating that all of the bytes were
transferred on the B cable.

In the Warnier-Orr diagram of a
general algor i thm for assessing
whether command execution is fin-
ished, the leftmost brace contains
the Command Complete message
(Fig. 5). For an initiator, the message
is received; for a target, the message
is sent. After the Command Com-
plete message is received, the algo-
rithm checks for a zero skew count.

If both conditions are met, a test for
status phase is made.

If the skew count isn't zero after a
Command Complete message is re-
ceived or sent, an error condition
must be flagged. In the case of atar-
get, this takes the form of a Check
Condition Status statement; for an
initiator, it emerges as an Initiator-
Detected Error Message.

Another piece of software that's
peculiar to the SCSI-2 Wide Bus is
the negotiation sequence. Each tar-
get/initiator pair must negotiate the
width of the data bus they will use
for their transactions nrior to their
first data transfer. In the absence of
this negotiation, an S-bit width is
used. This default feature allows the
simultaneous use of devices with dif-
ferent bus widths.

The negotiation is simple: The ini-
tiator requests a width using a Mes-
sage Out sequencer and the target
responds with a Message In se-
quence specifying that width or a
smaller one. There isn't any further
negotiation.

An example of such a negotiation
is a state log display generated by
the Adaptec SDS-3 SCSI test and de-
velopment system (Fig. 6). The first
Message Out byte (C0) is an Identify
message sent from the initiator to
the target. This is signalled by the
highest order bit, bit 7, which is set to
a one. Also, bit 6 of this message byte
specifies whether the initiator has
granted the target the right to dis-
connect. In this example, the bit is a
1, indicating that the target may dis-
connect. This byte also contains bits
that make it possible to select either
a specific logical unit number or a
target rout ine number. The pro-
posed SCSI-2 standard gives further
details.

The next Message Out byte (01) in-
dicates the beginning of a message
containing more than one byte. Af-
terwards comes a 02 Message Out
byte, which specifies that two more
message bytes will follow. The first
of these, a 03, tells the target that
this is a Wide Bus negotiation se-
quence. The second, a 02, requests a
bus width of 32 bits.

The next four Message In bytes in
the state log are the target's re-

5. THE ALG0RITHM DETERMINING wmn a rrata transfer is comprete must
ensure that a cornmand complete message was received on the A cable and that the skew
count is zero.

Seclion A:

Command Complete
(0,1)?1

r ._ l
J
'filii'

1
l * i
['** t
fContinue

wittr transter

Perlorm any necessary cleanup

;i:ifil fsenrctrecrconoiti.nstarus
A - .

ililll fend
inithtor'delecled error messase

Taroet f
(0,1i?6 \

Asseilsignalsforstatusphase

a - .
filillt failftrsrarusRhase

a
eommanmomdm

(0,1)?7

Condition slalemenh:
1) Hardware detects completion (implementation-depndent).
2) Skew count is not equal to 0 (BE(ls + REOBs).
3) Device delecting bad slew is a target.
4) Device delecting bad skew is initiator.
5) $kew count equals 0 (BE0s = RE0Bg.
6) Device checking skew counl is larget.
7) Hardwan does nol delect Bompletion (irnplementation.dependenl).
8) 0evice checking skew cotnt is inilialor.

sponse. The first byte,
a 01, specif ies that
more Message In
bytes will follow. The
second, a 02, reports
the number of Mes-
sage In bytes that will
be sent. Next comes a
03, which tells the ini-
tiator that this is a
Wide Bus negotiation
sequence. The last
Message In byte, a 01,
is the target's reply.
The message specifies
a width of 16 bi ts,
which is less than the
requested width of 32 bits. Because
bhe smaller of the two widths is used,
this negotiation sequence will result
in a bus width of 16 bits.

A further consideration is the data
padding that may be needed by a
SCSI-2Wide Bus. The SCSI standard
states that the number of bytes in ev-
ery data transfer must be an integer
multiple of the bus width in bytes. As
a result, a 16-bit bus must transmit
an even number of bytes, and the
bytes transferred by a 32-bit bus
must be a multiple of four. If the
data doesn't meet this restriction,
the transmitter must pad the data.

To ensure data integrity when pad
bytes are needed, the transmitter
must also send an Ignore Wide Resi-
due message. This message specifies

fil$fif'I!-flfffTfirSr

SCSI.z SOFTWARE

6. THIS STATE LOG DISPLAYshowsatypical
bus-width negotiation sequence for a SCSI'2 Wide Bus.

the number of undefined pad bytes
included in the final bus transaction
(the last set of REQ/ACK and
REQB/ACKB handshakes).

In the example code, the Com-
mand Out message with an op code
of 03 is a Request Sense command
that results in the transfer of 19 hex
(25 decimal) bytes from the target to
the initiator. The next line specifies
that number: Data In 19H bytes (f'r,g.
6, again). Because 25 bytes are
transferred on a 16-bit bus, the trans-
action would consist of 72, Z-byte
transfers plus one 1-byte transfer.
Consequently, a pad byte is needed
to make the transaction 26 bytes.

Immediately below the line speci-
fying the number of bytes trans-
ferred are two Message In bytes.

The first byte, a24, tells the initiator
that it must ignore a wide residue.
The second. a 01. indicates the num-
ber of bytes to be ignored-one. This
corresponds to bits 8 through 15, the
second byte of the last transfer.

The proposed SCSI-2 standard
also defines a parity bit for each data
byte. As a result, the A cable has one
parity bit, and the B cable has three.
Even undefined bytes have valid par-
ity. Therefore, in the above example
of a wide residue, the pad byte sent
from the target to the initiator has
valid parity to ensure that all bytes
transferred have valid parity.

Handling of parity errors is imple-
mentation-dependent. Retries up to
a specified number is one type of
handling method. If this doesn't pro-
duce a successful transfer, an error
message is supplied from one level of
software to another. The result may
be a display message flagging the
parity error. The error may also be
written to an error log file.!

George Hahn, software engineer
with Adaptec's Deuelopment SYs-
tems Operat'ion, holds a BSAE
from R enss e laer Po ly te chnic Ins ti-
tute, Troy, N.Y., and an MSME
from the Uniuersitg of California
at Berkeley.

Mark S. Gordon, founder and
president of Di,gital Finesse, de'
signed ICs at Zilog and helPed
found Verticom Inc.

00020.30760 Bus Free Delected
00045.88097 Arbitration as 07 45.88108
00045.88122 Selection ids : (1001 0000b) 45.88143
00045.88243 lvlessage out C0
00045.88254 Message out 01
00045.88265 Message out 02
00045.88271 Message out 03
00045.88276 Message out 02
00045.88332 l\,4essage out 01
00045.88366 Message out 02
00045.88380 Message out 03
00045.88400 Message out 01

046
045
044
043
042
041
040
03F
03E
03D
03c
03B
03A
039
038
037

00045.88501 Command out 03 00 00 00 19 00
00045.89881 Dala in 19H byte (s)
00045.89914 Message in 24
00045.89950 Message in 01

odopfec
Development Systems Operation

691 s. milpitas boulevard o milpitas, california 95035
408/945-8600

