

Table of Contents
Virtio Innovator - Design Creation Tutorial ... 1

CONFIDENTIALITY NOTICE ... 2

RESTRICTED RIGHTS LEGEND .. 2

Trademarks ... 2

Documentation Conventions ... 2

History .. 3

Step-by-Step Example ... 3

Step-by-Step ... 3

Example .. 3

Introduction ... 4

Starting a New Design Project .. 4

Adding Processes to the Design .. 5

Describing The Tester Process .. 7

Describing the DUT Process .. 14

Browsing Design Information ... 16

Setting the Environment for Compilation and Linking ... 19

Setting the Project Specific Environment .. 21

C++ Code Generation and Compilation .. 22

Debugging the Design ... 23

Tracing Signal Values .. 27

Using the Waveform Viewer During a Prototyping Session 28

Using the Waveform Viewer for Post-processing Analysis .. 31

The Test Bench Concept .. 32

Modify the Prototype for Use with a Test Bench ... 33

Creating a Test Bench ... 36

Running a Test Bench ... 39

Symbols .. 41

Creating Magic-C Symbols ... 42

Modifying a Symbol or Its Implementation After Creation 45

Using Magic-C Symbols ... 46

Opening a Symbol or Its Implementation ... 48

Code Examples ... 51

MAGIC-C Code Examples ... 51

Introduction ... 52

Creating Process Concurrency .. 52

Reset: Bringing an FSM to an Initial State .. 53

Starting and Stopping a Process ... 54

Timers .. 54

iii

Printed Documentation

iv

Generating Clock Signals Using the Clock Construct ... 55

Generating a Clock Signal with a Duty Cycle of 30% .. 56

Getting the Current Prototyping Time .. 57

Synchronizing Data Transmission Using a Clock .. 58

Synchronizing Data Transmission Between FSMs ... 59

Clocked Magic-C Loops .. 60

Do-While / Repeat-Until Clocked Loop ... 60

Clocked WHILE Loop ... 61

C-Style Clocked FOR Loop .. 62

Interrupt ... 64

Matched Filter Design .. 64

Overview ... 64

Introduction ... 65

Matched Filter Specification .. 65

System Partitioning .. 66

Specification of Matched Filter (Initial Version) .. 68

Data Generator Specification .. 68

Filter Specification .. 70

Adding Delay and Time to the Model ... 72

Using Reset in a MAGIC-C Model ... 74

Handling Protocol Refinement in MAGIC-C .. 76

Summary .. 80

UAR Design .. 80

UAR Design ... 81

Using MAGIC-C .. 81

Introduction ... 81

Universal Asynchronous Receiver Specification .. 81

Change in Specification: Noise Resistant Behavior ... 83

Basic Test Bench Framework .. 84

Communication Protocol .. 85

User-Defined Data Type Across Model Interfaces ... 85

Refinement Steps for the UAR Framework .. 86

Inital version ... 87

Version 2 .. 92

Version 3 .. 95

Version 4 .. 99

Final version ... 101

Summary ... 107

Glossary .. 109

Index .. 111

Virtio Innovator -
Design Creation
Tutorial

1

Printed Documentation

CONFIDENTIALITY NOTICE

No part of this publication may be reproduced in whole or in part by any means (including
photocopying or storage in an information storage/retrieval system) or transmitted in any
form or by any means without prior written permission from Virtio Corporation.

Information in this document is subject to change without notice and does not present a
commitment on the part of Virtio. The information contained herein is the propriety and
confidential information of Virtio or its licensors, and is supplied subject to, and may be
used only by Virtio’s customer in accordance with, a written agreement between Virtio
and its customer. Except as may be explicitly set forth in such agreement, Virtio does not
make, and expressly disclaims, any representation or warranties of its completeness,
accuracy or usefulness of the information contained in this document. Virtio does not
warrant that use of such information will not infringe any third party rights, nor does
Virtio assume any liability for damages or costs of any kind that may result form use of
such information.

This document contains unpublished confidential information and is not to be disclosed or
used except as authorized by written contract with Virtio. In the event of publication, the
following notice is applicable:

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

© 1999-2001 Virtio Corporation. All rights reserved.

The entire notice above must be reproduced on all authorized copies.

Trademarks

Virtio InnovatorTM, IntegratorTM, and ExplorerTM are trademarks or registered trademarks
of Virtio Corporation. Windows® 95, 98, and NT 4.0 are registered trademarks of
Microsoft. Microsoft Visual C++ is a product name of Microsoft. Adobe Acrobat® is a
registered trademark of Adobe.

Documentation Conventions
Each of the documentation conventions used in this Design Tutorial is explained below
and an example of provided.

• Bold, italicized text in navy blue specifies a name or label on an Innovator window
dialog box that cannot be altered by the user. Examples include window names,
toolbar names, toolbar button names, labels on dialog boxes (check boxes, text-
entry sections, etc.), pull-down menu entries, keyboard key names, etc. This text
appears as follows:

Navigate Toolbar

2

Virtio Innovator - Design Creation Tutorial

• The courier font in navy blue indicates text that the user has or can enter. It
would also include the names for a Process, Block, Symbol, etc., since this name
was entered by a user at one time. It looks like:

-c -nologo -I . -I "$(CPP_DIR)" -I "$(ENGINE)" –MTd -Zi

• Underlined text in blue indicates a hyperlink. Aligning the cursor over this
hyperlink and single-clicking sends one to another page or web site. It's
appearance is as follows:

Design Browser

History

Version
2.01

Virtual Silicon 2.0 (Beta)
documentation

11/12/1999

Version
2.02

Virtual Silicon 2.0 (Product)
documentation

02/10/2000

Version
2.03

Virtio Integrator (Product)
documentation

01/08/2001

Version
2.04

Virtio Integrator (Product)
documentation

01/15/2001

Version
2.05

Virtio Integrator (Product)
documentation

01/19/2001

Version
2.06

Virtio Integrator (Product)
documentation

02/04/2001

Version
2.07

Virtio Innovator (Product)
documentation

04/30/2001

Step-by-Step Example

Step-by-Step
Example

This chapter illustrates the many features of the Virtio Integrated Development
Environments through an ongoing example design. By the end of this chapter,
the user should be able to create, compile, and debug a Virtio prototype.

3

Printed Documentation

Note: The MAGIC-C code for all the examples in this tutorial is installed at the same
time as the Virtio Innovator. The examples are available under
<virtio_innovator_install_path>\IDE\examples, where
<virtio_innovator_install_path> is the absolute path chosen during Virtio
Innovator installation.

Introduction

This chapter takes the reader through the creation of a running design example called
tutorial. Along the way numerous features of the Virtio Innovator are illustrated. Since
this is a process with many steps, it has been broken into individual pages as follows:

1. Starting a New Design Project

2. Adding Processes to the Design

3. Describing the Tester Process

4. Describing the DUT Process

5. Browsing Design Information

6. Setting the Environment for Compilation and Linking

7. Setting the Project Specific Environment

8. C++ Code Generation and Compilation

9. Debugging the Design

10. Tracing Signal Values

11. The Test Bench Concept

12. Creating a Test Bench

13. Running a Test Bench

14. Creating Symbols

A running design example called tutorial in this and the next chapter is continually
modified to illustrate usage of different Virtio Innovator features.

The design tutorial is extremely simple since it has only the following two devices:

1. A Design Under Test (DUT)

2. Another device called Tester.

The devices perform a simple handshaking protocol five times. The Tester device
initiates communication by sending a go message. The DUT device responds by sending a
go_more message. Tester halts the handshaking after the go message has been sent five
times, having used an internal clock to count the number of times handshaking has
occurred.

Starting a New Design Project

4

Virtio Innovator - Design Creation Tutorial

To begin creating a new design:

1. From the File menu, select New Project.

2. Provide a design name (for example, tutorial) and a directory for the design
(for example, c:\vs_tutorial). If the directory does not exist, the editor creates
the new directory. Use a valid C identifier name for the design.

Figure 1: Layout of a Prototype in the Virtio Innovator

The design is created as a Block. This Block is added to the Design Window as the top-
level Block of the design. The first page of the tutorial.blk block opens in the Design
Window.

Adding Processes to the Design

Now we will add two processes, the first named DUT and the second named Tester, to
the top-level Block as shown in Figure 1. To do so, follow the steps on this (to add the
DUT Process) and the next (to add the Tester Process) pages:

1. Left-click once on the Process icon on the Magic-C Toolbar or click Add on
the Main Menu Bar and select Process. The Magic-C Toolbar

 is located at the top of

5

Printed Documentation

the Virtio Innovator screen. [If the Magic-C Toolbar is not visible, first click View
from the Main Menu Bar then select Magic-C Toolbar.]

Note: While the top level Block is displayed in the Design Window, only the Block

(), Process () and Add CPU () icons are available on the MAGIC-C Toolbar
since these reflect the only permitted actions. The rest of the icons on this toolbar are
grayed-out. As we will soon see, these other icons become available when editing an
implementation of a Process.

2. Select the desired location of the first Process and left-click to place it. An error
message (Reference has no implementation.) will appear in the Message Window at
the bottom of the Virtio Innovator screen (see Figure 1 on the previous page for Message
Window location). Don't be concerned about this error message as it will disappear as
soon as we define the contents of this new Process.

3. While the newly created process is still selected, type the name of the process
inside the Process construct text window. Be sure to use a legal C variable name. For
example, in the case of the DUT process, type in "DUT".

Note: To resize the Process construct drag any of the highlighted corners while the
construct is selected.

4. To change the properties of text, select the text and right-click to display a drop-
down menu.

5. Select Properties to display the Properties dialog box shown in Figure 2a. If
necessary, change the text font using the Font button and/or the background color using
the Background Color button.

Figure 2a: Changing Text Properties

6

Virtio Innovator - Design Creation Tutorial

6. Repeat steps 1 through 3 above to create the other Process named Tester.

7. Define two MAGIC-C signals called go and go_more by placing the two C-language
statements listed below in the Declaration construct (see Figure 2b) of the tutorial
Block. Note that the go_more signal carries an integer as a payload. [For additional
details, see the Magic-C Language Reference Manual, Process and Declaration.]

signal go;

signal go_more(int);

8. Define a clock named clk by placing the statement clock clk; in the Declaration
construct. Now the Declaration construct in the tutorial Block should look like the one
depicted in Figure 2b below.

Figure 2b: Contents of the Declaration Box In The Top Level Block Of The tutorial Design

Note: In every level of the hierarchy, the common MAGIC-C Variables and Signals for
that scope are defined in a MAGIC-C Declaration construct. All MAGIC-C Signals employ
broadcast semantics. In other words, every Process in the tutorial Block that has a
Signal-In MAGIC-C construct for a given Signal automatically receives that Signal. The
user does not need to send the signal explicitly to each Process.

9. Now that the processes are positioned in the tutorial Block, click the Save File

icon on the Edit Toolbar to save the design. The Edit Toolbar

 is located
at the top of the Virtio Innovator screen. [If the Edit Toolbar is not visible, first click View
from the Main Menu Bar then select Edit Toolbar.]

Describing The Tester Process

Describing each Process, an example of which is shown in Figure 3a, is the most labor
intensive part of this design example. The Process is that level in the hierarchy where
actual work is being done by the prototype when it runs. Each process contains a Finite
State Machine (FSM) or some portion thereof.

7

Printed Documentation

Figure 3a: Describing Process Tester

To describe the Tester Process, proceed as follows:

1. Double-click on the Tester Process to open the implementation of that Process
and move one level down in the design hierarchy. A dialog box will appear asking
if you wish to create a new file.

2. Click on the YES button or press the keyboard Enter button to create the new
Process. The Tester Process implementation opens in the Design Window and is
ready for editing.

3. The MAGIC-C Start construct is displayed and should be selected. The Start
construct designates the first state of the Finite State Machine. If the Start MAGIC-
C construct is not selected, select it by locating the cursor over it (note that the
cursor becomes a crosshair) and left-clicking. [Be careful to select the Start
construct (its outline will turn red) and not the text box within it (the text box
turns yellow when selected and a text cursor is placed inside it).] In Figure 3b only
the text box in a Task construct is selected while in Figure 3c the entire State
construct named ready is selected.

8

Virtio Innovator - Design Creation Tutorial

4. Left-click on the Add Task icon on the Magic-C Toolbar located near the top
of the screen. The Task construct is automatically connected to the tail of the Start
construct. Although you should not do so now, in general the steps for adding a
new MAGIC-C construct are:

a. Deselect any selected MAGIC-C constructs.

b. Left-click the icon of the desired construct, move the cursor over the
Design Window and left-click again to place the construct at a convenient
location.

c. To make a connection between two constructs, select the first
construct, and then left-click on the connection-point at the center bottom
of that same construct.

d. Move the cursor anywhere within the second construct and left-click.

Note: There are clearly defined rules regarding which Magic-C constructs can connect
to which other constructs. As a result, some direct construct-to-construct connections
are not permitted and cannot be made by the user. This topic is beyond the scope of
this tutorial, however for specifics of these rules see the Magic-C Language Reference
Manual.

5. Note that the inner box of the Task construct is yellow. The yellow color denotes a
selected text box. Any legal C code can be placed here, including any MAGIC-C keywords,
data types, or pre-defined functions. For the example depicted in Figure 3a, the clock
signal (clk) will now be set to have a period of 1 prototyping unit. To do so enter the
following text in this Task construct:

set(now + 1, clk);

Figure 3b depicts the Task construct with a highlighted text box.

Figure 3b: Selected Text Box in Task Construct of Project Tester

Note: As you proceed through the instructions on this page, error messages will
appear in the Message Window at the bottom of the Virtio Innovator screen. In most
cases the offending text or construct can be highlighted by double-clicking on the error
message in the Message Window. However for now do not be concerned about error
messages. Once the tutorial design is completed by the end of the next page all of
these messages will be gone because all error conditions will have been removed.

6. Select the Task box by locating the cursor over it (the cursor becomes a crosshair)
and left-clicking.

7. Left-Click on the Signal-Out icon on the Magic-C Toolbar. A Signal-Out
construct will automatically be placed below and connected to the Task construct. Note
that the text box inside the Signal-Out construct is selected (its border is yellow).

9

Printed Documentation

8. Type go in the text box of the Signal-Out construct.

Note: Typing go in the Signal-Out construct broadcasts this signal to all Processes. In
order for other Processes to receive broadcast signals the following two additional
conditions must be met: 1) The same signal must be declared at a higher level of the
design hierarchy (thereby providing the signal to Processes lower in the hierarchy; this
step was done previously when go was defined in the tutorial Block); 2) The same
signal must be received with a Signal-In construct. This rule always applies when using
Magic-C syntax, which employs broadcast semantics for signals. See the MAGIC-C
Language Reference Manual for further details.

9. While the MAGIC-C Signal-Out box is selected, left-click on the Add State icon
to add a State construct that is connected to the Signal-Out construct. Name this state
ready and select the ready State construct. The content of the Design Window of your
Tester process should match that shown in Figure 3c.

Figure 3c: Partially Completed Process Tester

10. Click the Signal-In icon on the Magic-C Toolbar to add the signal input called
go_more(a). By doing this, we allow the Tester Process, when it in the ready state, to
receive the go_more signal and depart the ready state. Tester then executes the code
located after the Signal-In construct.

Note: The go_more signal has an argument called a. The variable a takes the value of
the payload that comes with the signal go_more. The variable a is local to the Tester
Process.

10

Virtio Innovator - Design Creation Tutorial

Note: The construct connected to the bottom of a State construct MUST always be a
Signal-In construct according to the semantics of MAGIC-C. As such, state transitions
in MAGIC-C are always guarded by the receipt of a signal. To state the same concept
differently, MAGIC-C Finite State Machines advance upon receipt of signal(s).

11. Declare variable a in the Declaration construct by typing int a; as shown in Figure
3d.

12. Select the Signal-In construct and left-click the Decision icon on the MAGIC-C
Toolbar. A Decision construct will automatically appear, be connected to the Signal-In
construct and have a text cursor placed inside it. [Note that the text box is highlighted in
yellow.]

13. Type a on the keyboard to place this character inside the Decision construct and
thereby test the value of payload a received with signal go_more.

14. Click the Signal-Out icon on the Magic-C Toolbar. A Signal-Out construct will
automatically appear, be connected to the Decision construct and have a text cursor
placed inside it. [Note that the text box is highlighted in yellow.]

15. Type go on the keyboard to place these characters inside the Signal-Out construct
and thereby broadcast signal go.

16. Left click on the line connecting the Decision construct to the Signal-Out construct.
A text box will be highlighted in gray next to the connecting line (which is sometimes
called an 'arc'). Place the cursor over the gray text box until it turns to a pencil and left-
click (to highlight the box in yellow and place a text cursor). Then type the characters <5,
which has the effect of sending signal go only if a < 5. Figure 3d depicts how the Process
Tester should now appear.

11

Printed Documentation

Figure 3d: Partially Completed Process Tester

Note: Steps 13 through 16 above introduced a key concept that we will briefly explain.
The Decision construct added in step 13 acts like a C-language Case statement. The
condition under test is the caption inside the Decision constuct (which is the value of
signal payload a in this case; conditions must always be a legal C expression). The
possible values for a Decision construct are (legal C expressions) in text boxes
associated with each of the lines connecting the left, right and bottom corners of the
construct to the rest of the design. In step 18 we displayed one of these connecting
line text boxes and added a value to it.

17. Now connect a State construct to the Signal-Out construct by selecting the Signal-
out construct (its outline will be highlighted in red as shown in Figure 3c) and clicking the

State icon on the Magic-C Toolbar. Type a dash ("-") inside the new State construct.
The dash means “return to the previous state”, which in this case means the ready state.
An alternative to using the dash is to call the newly created state "ready", thereby
automaticaly referring to the previously defined ready state of this FSM.

12

Virtio Innovator - Design Creation Tutorial

Note: This rule holds throughout all MAGIC-C specifications and its use in place of
loops to return to a previously defined state removes visual clutter from the prototype.
To refer to a previously defined state, simply reuse the same name inside a subsequent
state.

18. Now we will connect another path from the Decision construct for conditions other
than a < 5. To do so, deselect any constructs that are selected (click outside all of them).

Then Add a Task construct by left-clicking on the icon on the Magic-C Toolbar. Place
it to the right of the go Signal-Out construct. Type reset(clk); inside the new Task
construct. Whenever this block is executed, it will reset the clock named clk, causing it to
stop running.

19. Now connect the Decision construct with the Task construct containing the
reset(clk); text. Do this by selecting the Decision construct, left-clicking on the right
corner of the Decision construct (the cursor changes to a pencil when placed over the
corner) and then left-clicking inside the Task construct. A line or 'arc' now connects these
two constructs.

20. Type else in the text box corresponding to the new arc to handle all cases not
explicitly covered by the Decision construct. The lower part of Process Tester should now
look like Figure 3e.

Figure 3e: Lower Portion of Partially Completed Process Tester

21. Now connect the Task construct which resets the clock with the State construct
containing a dash. To do so move the cursor over the bottom of the Task construct until
the cursor changes to a pencil, left-click, and move the cursor over the dash State
construct. Left-click inside the dash State to complete the connection. [It may be
necessary to move the connecting line to make it look like Figure 3a. To do so, left-click
to select the line (it turns red), move the cursor over the line (the cursor changes to a
short line with two arrowheads) then click and hold the left mouse button while dragging
to move the line. To move an individual vertex, align the cursor over it (the cursor
changes to a crosshair icon with the text Point next to it), click and hold the left mouse
button then drag.]

Note: Connections are always made between MAGIC-C constructs, even if some
connections appear to connect to an existing link. The connection between the Task
construct and the dash State construct is an example of this.

13

Printed Documentation

22. Now check that your design agrees with that shown in Figure 3a. In addition, there
should be no error messages in the Message Window. If there are error messages,
review the steps above to make sure you have made all connections properly,
been precise about using the specified characters or text strings inside constructs
and have not added any extra constructs.

The Tester Process is now complete. Save it by pressing the Save-file icon on the
Edit Toolbar.

Note: The semantics of MAGIC-C dictate the types of construct to which each Magic-C
polygon (construct) can directly connect. For example a Task construct can connect
directly to a Signal-Out polygon placed immediately below the Task construct. However
a Task construct cannot connect directly to a Signal-In polygon in a Magic-C Finite
State Machine. Enforcement of these semantic rules by the Virtio Innovator can be
seen when one selects an already placed Magic-C construct and then clicks an icon on
the Magic-C toolbar to place another construct. In such a case, the second construct
will automatically be connected to the first if only if such a connection is permitted by
the semantics of Magic-C.

Now go on to the next page to create the DUT Process.

Describing the DUT Process

As mentioned previously, the DUT Process depicted in Figure 4 synchronizes its output
(the go_more signal) with the incoming clock represented by the go signal. Now let's go
ahead and create it as follows:

1. Assuming that the Tester Process is still shown in the Design Window, return to
the parent (the top level Block in this case) by left-clicking the Open Parent

icon on the Navigate Toolbar. The Navigate Toolbar is located
at the top of the Virtio Innovator screen. [If the Navigate Toolbar is not visible,
first click View from the Main Menu Bar then select Navigate Toolbar.]

2. Double-click on the DUT Process construct to open it as a Process view (one level
down in the hierarchy) in the Design Window.

3. Select YES when asked to create a new Process. The DUT Process page opens in
the Design Window and is ready for editing.

4. The MAGIC-C Start construct is displayed and should already be selected. If it is
not selected, select it by clicking on it.

5. Left-click on the Add Task icon on the Magic-C Toolbar. The Task construct is
automatically connected to the tail of the Start construct.

6. Place the following text in the text box of the Task construct:
x=0;

14

Virtio Innovator - Design Creation Tutorial

7. Left-click the Add State icon on the Magic-C Toolbar to add a State construct
and automatically connect it to the Task construct. Name this State construct idle.

8. Left-Click on the Signal-In icon on the Magic-C Toolbar.

9. Type go in the text box. This will receive the go signal sent by the Tester Process.

10. While the MAGIC-C Signal-In box is selected, left-click on the Add State icon
on the Magic-C Toolbar to add a State construct.

11. Name this state wait_for_clk then select the entire State construct by left-clicking
on it.

12. Click on the Signal-In icon on the Magic-C Toolbar to add a Signal-In
construct. Then enter clk in the text box of this new construct. By doing so you are
allowing the DUT Process, while in the wait_for_clk state, to receive the clk signal from
the Tester Process.

13. Left-click the Signal-Out icon on the MAGIC-C Toolbar to add a new Signal-
Out construct.

14. Now we will generate the signal called go_more(x) which will be received by the
Tester Process. To do so select the text box inside the Signal-Out construct and enter
the text go_more(x).

Note: As explained above, the go_more signal has an argument called x. The variable x
is the payload accompanies the signal go_more. The variable x is local to the DUT
Process. However when this signal is received in the Tester Process the payload will be
assigned to variable x that is local to Tester.

15. Declare x in the Declaration construct of the DUT Process by typing int x; in the
text box of this construct.

16. Select the Signal-Out construct and left-click the Task icon on the MAGIC-C
Toolbar.

17. Type x+=1 inside the Task construct to increment variable x.

18. Now connect a State construct to the Task construct by selecting the Task construct

and clicking the State icon on the Magic-C Toolbar. Then type idle as the name
inside the newly created State construct. This name, since it is identical to the name of
another, previously defined construct, refers to that previously defined construct. The
result is that the FSM enters the previously defined state (which in Figure 4 is
immediately above the go Signal-In construct. This approach can be used in place of
loops to return to a previously defined state, thereby removing visual clutter from the
prototype.

15

Printed Documentation

19. To save all the open documents click File on the Main Menu Bar and select Save

All or simply left-click the Save-all icon on the Edit Toolbar. Once again no errors
should be listed in the Message Window if the Process was created correctly.

Figure 4: The FSM behavior of the DUT Process

Browsing Design Information

The Virtio Innovator provides three browsers that are used to gather information about a
prototype. One of these at a time can be displayed in the Browser Window. If this Window
is not visible, click View on the Main Menu Bar and select Browser Window. These are:

• Design Browser

• Signal Browser

• Connectivity Browser

Each of these browsers is explained below.

Design Browser

16

Virtio Innovator - Design Creation Tutorial

To gather information about the design Blocks, Processes and States, use the Design

Browser Window. To display it, click on the Design tab beneath the Browser Window
to the left of the Design Window.

The Design Browser shows the hierarchy of a prototype and the states within every
Process. As shown in Figure 5a, a Block (for example tutorial) is depicted using a Block

 icon. A Process (for example DUT) is shown with a Process icon. Each state of a
Process is listed with next to a State icon. To display the implementation of any item
listed in the Design Browser, double-click on any icon and the resulting object will be
highlighted in the Design Window. To expand and collapse the prototype hierarchy
depicted in the Design Browser, use + and – icons respectively.

Figure 5a: Using The Design Browser

Signal Browser

To view MAGIC-C signals in the design, click the Signals tab at the base of the
Browser Window. The Signal Browser window opens, as depicted in Figure 5b.

17

Printed Documentation

Figure 5b: The Signal Browser

The Signal browser shows where each signal has been declared in a prototype, thereby
indicating the scope of a signal in the design hierarchy. It also shows where each signal
has been used or consumed in a design. For example, in the tutorial design, clk is a
special signal, marked by the MAGIC-C Clock icon that has been used in the Tester
process. Signal go has been broadcast twice via the MAGIC-C Signal-Out construct, as
indicated by the icon. To highlight in the Design Window the use of any signal, double-
click on an icon in the Signal Browser.

Connectivity Browser

Detailed connectivity information about a signal can be requested in the Signal Browser.
The results of such a request are provided in the Connectivity Browser.

18

Virtio Innovator - Design Creation Tutorial

(a) (b)

Figure 5: (c) Request Information About the go_more Signal; (d) Connectivity Browser Provides
Query Results

For example, to find connectivity information for the go_more signal:

1. Right-click on the go_more declaration in the Signal Browser to display a pull-
down menu.

2. Select Show Connectivity as shown in Figure 5(c).

3. The Connectivity Browser is displayed as depicted in Figure 5(d) and shows
the following:

A. Signal scope: The scope of the go_more signal. It is visible in the
tutorial, DUT and Tester modules.

B. Signal naming: The local name of the signal in a scope
(−><local_name>). In this example, the signal is known as go_more in all
scopes.

C. Signal direction: The direction of a signal. Observe that go_more is
broadcast from the DUT process (as indicated by the icon) and consumed
in the Tester process (note the icon).

Note: When using Symbols a signal might be known by different names inside a
Symbol. See the Virtio Innovator User's Manual for further details.

Setting the Environment for Compilation and Linking

19

Printed Documentation

To instruct the Virtio Innovator to use the Microsoft Visual C++ Compiler:

1. If Visual C++ is already installed, the Innovator reads its location and that of
associated directories directly from the Windows® registry when the Innovator is
first installed. If Visual C++ is not installed, install it now.

2. Verify that you have Service Pack 3 or later for Visual C++. To do so it may be
necessary to check the version number of individual files as explained on the
System Requirements page (in the Overview & Installation chapter) of the Virtio
Innovator User's Manual.

3. In the Virtio Innovator, click Settings on the Main Menu Bar and choose
Directories. The dialog box depicted in Figure 6 will appear.

Figure 6: The Global C++ Settings Dialog Box

4. Verify that correct directories for Visual C++ Include Files, Library Files and
Executable Files have been specified. To do so:

a. Click the icon to the right of the Show Directories: text to
display a pull-down menu of directories. Select the Include Files directory.

b. Check the path(s) specified in the Include Files box. To edit the
path double-click on it and manually enter a new path or click the browse
button to the far right of the selection rectangle. One or more new

paths can also be entered by clicking the New (Insert) icon .

c. Repeat steps 3a and 3b above for each of the other two directories
(Library Files and Executable Files).

20

Virtio Innovator - Design Creation Tutorial

Note: The paths to the Include Files, Library Files and Executable Files directories are
taken from the Windows registry when the Virtio Innovator is first installed. This
assumes that Visual C++ was loaded onto your machine prior to installing the Virtio
Innovator.

5. Verify the path to the Virtio Innovator by checking the text to the right of the
Engine text. This should point to the
<virtio_innovator_install_path>\IDE\engine_dll where
<virtio_innovator_install_path> is the absolute path chosen during Virtio Innovator
installation.

Note: Do not change the engine directory unless the location of the prototyping engine
is changed after installation of the Virtio Innovator. Upon installation of the Virtio
Innovator, the location of the engine files is saved in the registry. When the Virtio
Innovator is invoked for the first time, it reads the location of the engine from the
registry. The next time the Innovator is opened it “remembers” the last location of the
engine files.

Setting the Project Specific Environment

To set the environment for a specific design:

1. Click Settings on the Main Menu Bar and choose Project Settings. The dialog
box depicted in Figure 7 will appear.

21

Printed Documentation

Figure 7: The Project Settings C++ Code Generation Dialog Box

2. Click on the C++ Code Gen tab.

3. Verify that the Configuration is set to Debug and that C++ Code Generation
Settings has Object files set to ObjDbg and C++ files set to cpp.

4. Click on the C++ Compilation tab and, when prompted about creation of ObjDbg
and cpp directories, click on Yes.

5. Verify that the Configuration is set to Debug, and check that the Compiler
arguments on the C++ Compilation page are set to:

 -c -nologo -I . -I "$(CPP_DIR)" -I "$(ENGINE)" –MTd -Zi

6. Click on the Output tab and verify that the Command Interpreter, Trace State
Changes and Use Smart Engine options are all checked. Also make sure that the
Configuration is set to Debug.

6. Click on the Output tab and verify that the Configuration is set to Debug.

7. Click OK.

C++ Code Generation and Compilation

Now that the prototype is complete, it will need to be compiled and linked in order to

generate an executable file. To generate such a file, click the icon on the Build/Run

22

Virtio Innovator - Design Creation Tutorial

Toolbar. The Build/Run Toolbar is located at the top of
the Virtio Innovator screen. [If the Build/Run Toolbar is not visible, first click View from
the Main Menu Bar then select Build Toolbar.]

While the prototype is being compiled, the Message Window below the Design Window
displays the progress of compilation and linking. If errors occur during code generation
and compilation they are sent to this Window. In most cases, double-clicking on a
message in the Message Window will display the offending statement of the prototype in
the Design Window.

Note: If the Message Window is not visible below the Design Window, click View on
the Main Menu Bar and select Message Window if it does not have a check mark next
to it.

Debugging the Design

After the design has been successfully compiled it is debugged. When doing so one can:

• Single Step a prototyping session.

• Set Breakpoints to debug a prototype.

Each of these topics is covered below.

Single Stepping During a Prototyping Session

The simplest mode of debugging is single-stepping. Let's first consider how to single-step
a prototyping sesison and how to stop one. Then we'll go on to a live example using the
design created earlier.

After compilation one can single-step a prototyping session by:

• Clicking the Single-Step icon on the Build/Run Toolbar.

or
• Pressing F10 on the keyboard.

or
• Clicking Run on the Main Menu Bar and selecting Debug Step from the pull-down

menu that appears.

After the first single-step operation,a Prototype Cockpit window will open. The Prototype
Cockpit window will contain any Test Bench(es) that were defined as well as a message
pane. Also, when the prototyping session is single-stepped in any one of these ways, the
session will advance a single Magic-C construct. Continuing to click the Single-Step icon
(or press F10) advances the prototyping session.

23

Printed Documentation

To terminate a running prototyping session:

• Click the Abort Prototyping Session icon on the Build/Run Toolbar.

or
• Pressing Shift-F5 on the keyboard.

or
• Clicking Run on the Main Menu Bar and selecting Debug Stop from the pull-down

menu that appears.

Now let's walk through single-stepping the prototype created on earlier pages of this
tutorial. To do so:

A. Display the main Block by clicking on the tab at the bottom of the Design Window
labeled tutorial.blk. The Tester and DUT Processes will appear in the Design
Window along with a single Declaration construct.

B. Click the Single-Step icon on the Build/Run Toolbar once. The DUT Process
implementation will appear in the Design Window. The Prototype Cockpit window
opens but is immediately minimized. The Waveform Viewer window is not
displayed by default. The settings for these latter two windows are not a problem
since we will not need them now.

C. Click the Single-Step icon on the Build/Run Toolbar two more times for a total of
three times. Note that the idle state of the DUT Process has been reached. This is
the case because the DUT Process was added to the tutorial Block first.

Note: The next MAGIC-C construct to be scheduled for execution is shown by the

 icon on the design. The current state of a Finite State Machine is pointed to by

the icon.

D. Click the Single-Step icon on the Build/Run Toolbar one more (the fourth) time.
The prototype returns to the Start state of the Tester Process because the DUT
Process is waiting for the go signal which must be generated by Tester.

E. Continue clicking the Single-Step icon on the Build/Run Toolbar. On the fifth
single-step the period of the clock, clk, is set to 1 time unit. On the sixth single-
step the go signal is broadcast for the first time. And on the seventh single-step
the ready state of the DUT Process is reached.

F. Click the Abort Prototyping Session icon on the Build/Run Toolbar to
terminate the session.

Setting Breakpoints in a Prototype

To investigate specific portions of a design it is useful to set breakpoints. In the current
design, for example, the two Processes Tester and DUT perform two-way handshaking.

24

Virtio Innovator - Design Creation Tutorial

As mentioned earlier, Process Tester initiates communication by sending the signal go
and Process DUT responds by sending the signal go_more. To see this functionality:

1. Increase the viewing area of the Design Window by closing the Browser Window as
follows: Click View on the Main Menu Bar and select Browser Window. To
increase the viewing area further, close the Message Window by clicking View on
the Main Menu Bar and selecting Message Window.

2. Display the two Processes Tester and DUT adjacent to one another in the Design
Window by clicking Window on the Main Menu Bar and selecting Tile Vertically.
The Tester Process, DUT Process and tutorial Block should all appear in the
Design Window.

3. Since it is not currently needed, close the tutorial Block by clicking the lower of

the two close window icons in the upper right corner of the Virtio Innovator
screen. The upper of these two icons closes the Virtio Innovator application.

4. Rearrange the two remaining panes in the Design Window by resizing them so that
together they occupy the full screen.

5. Because the DUT Process awaits the go signal before communicating, put a
breakpoint in the Signal-In construct containing go. To do so make the DUT
Process the in-focus window, right-click on the Signal-In construct containing go
and select Toggle Breakpoint on this context from the pull-down menu menu
that appears. This is depicted in Figure 8.

Figure 8: Setting A Breakpoint

6. Similarly, set a breakpoint on the Signal-In construct containing go_more(a) in the
Tester Process. The Design Window containing both Processes now looks like the one in
Figure 9.

25

Printed Documentation

Figure 9: The Location of Breakpoints

7. Start execution by clicking the Go icon on the Build/Run Toolbar or by pressing
F5 on the keyboard.

8. Minimize the Waveform Viewer and Prototype Cockpit windows. We will not need
them.

9. Note that execution has stopped in the DUT Process on receipt of signal go in the

Signal-In construct. This point is marked by the Stop icon . This go signal was
transmitted at initialization by the Tester Process just after the Start state.

26

Virtio Innovator - Design Creation Tutorial

10. Click the Go icon again to continue execution. Note that execution stops in the
Tester Process on receipt of signal go_more. The DUT Process transmitted this signal just
after it had received a go signal.

11. Click the Go icon repeatedly to transfer control of the prototyping session to
each Process in turn, thereby obeying the handshake mechanism. Note that this signal
exchange continues for six repetitions. After that point Tester stops sending the go
signal, thus terminating two-way communication.

12. To terminate the prototyping session, click the Abort Prototyping Session

icon on the Build/Run Toolbar.

13. If the Waveform Viewer window is open or minimized, close it by displaying

it then clicking the icon in the upper right corner.

14. Remove any breakpoints by repeating step 5 above for each of the two breakpoints.

Note: Breakpoints can be set both before running and while running a prototyping
session. For the latter case a breakpoint can be toggled whenever the session is not
running. Also, single-stepping operations can be mixed with breakpoints for better
debugging granularity. The combination of these tools ensures easy and dynamically-
variable investigation of any prototype section.

Tracing Signal Values

There are several ways to inspect the values of MAGIC-C signals, variables and state
transitions. These techniques include the following:

• Using MAGIC-C functions like vs_printf to trace design activity.

• Tracing FSM state changes in the Message Window.

• Using advanced Test Bench controls (this will be covered on the "Creating a
Test Bench" and "Running a Test Bench" pages) to control and observe a prototyping
session.

• Tracing of signal and variable value changes interactively while a session is
running.

• Post-processing of signal and variable values from a prototyping session run.

To illustrate how to monitor signal values, the tutorial design is reused, as shown in
Figure 9 below. In this prototype there are three signals: go, go_more, and a special clock
called clk. On the next two pages of this tutorial the Waveform viewer will be used
during a prototyping session (on the "Using the Waveform Viewer During a Prototyping
Session" page) and after the session has terminated (on the "Using the Waveform Viewer
for Post-Processing Analysis" page).

27

Printed Documentation

Figure 9: Behavior of the Tutorial Example

Using the Waveform Viewer During a Prototyping Session

To view signal value changes in the Waveform Viewer:

1. Click Settings on the Main Menu Bar and select Project Settings.

2. Click the Logging tab. The dialog box depicted in Figure 10 will appear.

28

Virtio Innovator - Design Creation Tutorial

Figure 10: The Project Settings Logging Tab Dialog Box

3. Verify that the Configuration is set to Debug.

4. Activate the Enable Logging to File or Waveform Viewer option by adding a
checkmark in the box.

5. For the Send Trace Output to option, select the Waveform Viewer radio button.

6. Click OK.

7. Recompile the design by clicking the Compile icon on the Build/Run Toolbar.

8. Replace the two breakpoints that were set then removed earlier. See Setting
Breakpoints to do so.

9. To start tracing signals, launch the prototyping session by:

Clicking the Go Until icon on the Build/Run Toolbar.

or
Clicking Run on the Main Menu Bar and selecting Debug Go Until.

8. When a pop-up window opens, type 1 in the text box to indicate that the
session should run for 1 time unit. The Waveform Viewer will open and its content
will be as depicted in Figure 11a.

Note: If the Prototype Cockpit window (with a Messages sub-window inside it) opens in
front of the Waveform Viewer, simply minimize the Prototype Cockpit window.

29

Printed Documentation

Figure 11a: The Virtio Waveform Viewer

In Figure 11a, the left pane of the Waveform Viewer window lists signals that are
currently being traced. On the top row of the right pane, the current prototyping
session time is displayed. For example, in Figure 11a the session has stopped at
zero time units. All signal activity is recorded in the right pane.

Note: By default, all signals are traced. Signals that needn't be traced can be specified
by clicking Settings on the Main Menu Bar and choosing Signal Logging. This is
described in the Virtio Innovator User's Manual.

The Signal-In icon in the right pane of the Waveform Viewer represents a
signal which has been received by a Process. For example Figure 11a shows signal
go was received by the DUT Signal-In construct during the zero time units interval.
It can be inferred from a knowledge of the design that signal go was transmitted
at initialization by the Tester Process just after its Start state. The DUT process
received it for the first time just after its idle state. To check this assertion, use
debugging techniques like single-stepping. (see Debugging the Design).

8. Continue the prototyping session by clicking the Go Until icon and entering 1
in the dialog box to tell the session to advance 1 time unit. Then make the Waveform
Viewer the in-focus window. The Waveform Viewer content will be as depicted in Figure
11b, in which clock signal clk is triggered once indicating that another time slot has
started (clock signals are special because they mark prototyping session time and
advance a Finite State Machine during a prototyping session). Also visible in Figure 11b is
the DUT process having transmitted the signal go_more and this signal having been
received by the Signal-In construct in Process Tester. As noted above, the signal activity
for go_more is displayed in the Waveform Viewer by a Signal-In icon corresponding to
the Tutorial::go_more signal.

30

Virtio Innovator - Design Creation Tutorial

Note: Signals are always shown in the Waveform Viewer when they are consumed, not
when they are generated.

Figure 11b: Signal Values After Time Zero

10. Stop the prototyping session by clicking the Abort Prototyping Session

icon on the Build/Run Toolbar. The Prototype Cockpit window will close
automatically.

11. Stop the Waveform Viewer by:

Clicking File on the Waveform Viewer Main Menu Bar and selecting Exit.

or

Clicking the Close icon on the Waveform Viewer window.

Using the Waveform Viewer for Post-processing Analysis

The Waveform Viewer can also be used for post-processing analysis after the prototyping
session has terminated. This feature might be useful, for example, to store results of a
particularly long run and analyze them later with the Waveform Viewer. Set up this
tracing mode as follows:

A. Click Settings on the Main Menu Bar and select Project Settings.

B. Click on the Logging tab and check activate Enable Logging to File or
Waveform Viewer by adding a checkmark in the box.

C. Set Trace in the File and Waveform Viewer Logging section to tutorial.vcd.

D. For the Send Trace Output to: option, click the VCD formatted file (for
waveform viewer) radio button (VCD = Value Change Dump) .

E. Click on OK.

31

Printed Documentation

F. Recompile the prototype by clicking on the Compile icon on the Build/Run
Toolbar.

The setting changes made above tell the Virtio Innovator to output prototyping session
results in a VCD text file called tutorial.vcd. After the prototyping session is over the
Waveform Viewer can be used to analyze the content of the VCD file. The procedure
below is an example of how this is done.

1. Verify that both breakpoints have been removed by checking both the Tester
Process and the DUT Process implementations. If not, remove them.

2. Start the prototyping session by clicking on the Go Until icon or by clicking
Run on the Main Menu Bar and selecting Debug Go Until. When a pop-up window
opens, type 10 in the text box to indicate that the session should be run for 10
time units (there is no activity after 6 time units.)

3. Abort the prototyping session, then invoke the Waveform Viewer by clicking the

Waveform Viewer icon on the Edit Toolbar.

4. Load the VCD file tutorial.vcd by clicking File on the Main Menu Bar of the
Waveform Viewer and selecting Open. The Waveform Viewer displays the
prototyping session results as shown in Figure 12.

5. Save and close the prototype.

Figure 12: Viewing a VCD File

The Test Bench Concept
As discussed in the Tracing Signal Values section, the Process Tester injects go and
clock signals into the DUT process. While this approach may be sufficient for simple
designs, a more comprehensive manner of prototyping and exercising a device interface
is needed. For example the following features are highly desirable:

• Interactive Signal Injection and Debugging: Especially in the early
stages of a design, it is useful to inject signals interactively and determine their

32

Virtio Innovator - Design Creation Tutorial

effects by monitoring portions of the design. The interface providing this capability
should also permit monitoring and modification of prototype variables.

• Modeling a System User Interface: Often completed designs support a
user interface for human interaction. One example is a wireless phone with buttons
for dialing, an LCD panel, and an LED array. A graphical interface permitting
addition and control of input/output devices (such as an LCD and buttons) would be
ideal for providing this capability. This "Test Bench" could then be used to
manipulate the virtual prototype in the same way that the target system will
eventually be manipulated by a user.

Both of these features are provided by a Virtio Innovator Test Bench. A Test Bench acts
as a graphical user interface while a prototyping session is running. It is created by
adding Test Bench "controls" such as Signal Buttons, LEDs, LCDs, a keyboard, etc. in the
Test Bench Builder provided as part of the Virtio Innovator. As an example of its use, the
tutorial design described early will be used to illustrate creation of a Test Bench.

Note: For more information about Test Bench controls refer to the Virtio Innovator
User's Manual.

Recall that in the design, Process Tester (see Figure 3a) broadcasts a go signal to initiate
and continue communication with Process DUT (See Figure 4). As a first step,
transmission of the go signal in the Tester process is replaced with a test bench control
that injects this signal into the prototype.

The value of local integer variable a in the Tester Process will also be monitored using
the same Test Bench. Note that the payload of the go_more signal updates this variable.
The value of a indicates the total number of handshakes that have occurred between the
two Processes.

Modify the Prototype for Use with a Test Bench

To remove broadcasting of the go signal by Process Tester:

1. Verify that the prototype has been saved and closed before starting this
procedure.

2. Using Windows Explorer, create a new directory, for example, c:\tutorial_tb,
outside the directory containing the tutorial design. This new directory will be
used to create a version of the tutorial prototype with a Test Bench.

3. Copy the following files from the tutorial design directory into the new directory
(for example, c:\tutorial_tb) created in the previous step: DUT.prc,
Tester.prc, tutorial.blk and tutorial.vsp. Note that it is not necessary to
copy any sub-directories.

4. Using Windows Explorer, locate the new directory (for example, c:\tutorial_tb)
and double-click on tutorial.vsp, the tutorial project file. The Virtio Innovator
opens with the new copy of the tutorial project loaded.

33

Printed Documentation

5. Use the Signal Browser, as shown in Figure 13, to identify where in the Tester
process signal go is broadcast. (For more information on the Signal Browser,
review the Signal Browser section or refer to the Virtio Innovator User’s Manual.)
The intent is to remove the broadcasting of signal go from the Tester process.

6. To remove every broadcast of signal go from the Tester process, double-click on
the icon marked with (1) in Figure 13 to highlight the Signal-Out construct. It
appears after the Start state in the Design Window.

7. Click the Delete icon on the Edit Toolbar to delete the Signal-Out construct.

Note: There are four ways to remove and discard a MAGIC-C construct once it has

been selected: 1) Press the Delete icon on the Edit Toolbar; 2) Press the Delete
key on the keyboard; 3) Use the keyboard shortcut Ctrl-D; 4) Right click on the
selected construct to display a pull-down menu and select Delete. There are three
ways to cut a construct and place it on the Windows clipboard after selecting it: 1)
Right-click and choose Cut from the pull-down menu; 2) Use the keyboard shortcut
Ctrl-X; 3) Click Edit on the Main Menu Bar and select Cut. For more information, refer
to the Virtio Innovator User’s Manual.

8. Connect the Task construct (containing the statement set(now+1, clk);) and the
ready State construct by first left clicking on the bubble at the bottom of the Task
construct and then left-clicking at the top of the ready State construct.

Figure 13: Remove The "go" Signal From The Tester Process

9. Remove the second broadcast of signal go (the icon marked by (2) in Figure 13) in
the same manner as described above.

34

Virtio Innovator - Design Creation Tutorial

10. Connect the MAGIC-C Decision construct and the (-) State construct by double-
clicking as explained above. Then type the condition < 5 in the textbox corresponding to
the connection.

11. In the Declaration box of the Tester process, replace the C keyword int with
VS_int. By declaring variable a as type VS_int as shown in Figure 14, it is marked as an
integer variable that can be monitored by a Test Bench. For more details on Virtio
Innovator data types (such as VS_float and VS_bool), refer to the Virtio Innovator
User’s Manual.

12. Click on any position outside the Declaration box to deselect it. As a result of these
changes, the implementation of Process Tester has now been modified to that depicted
in Figure 14. It will no longer send the go signal and integer variable a can now be
monitored from a Test Bench. Note that the DUT process remains unchanged.

13. Save the design.

14. Compile the modified prototype by clicking the icon on the Build/Run Toolbar.

Figure 14: Implementation Of Process Tester For Use With A Test Bench

35

Printed Documentation

Creating a Test Bench

In this section, a Test Bench is created to replace the functionality of the Process Tester.
The Test Bench will contain a Signal Button that sends signal go to the DUT process and a
Register to view the current value of variable a. To create the Test Bench:

1. Open the Design Browser by clicking on the tab at the base of the Browser
Window. [If the Browser Window is not visible, first click View from the Main
Menu Bar then select Browser Window.]

2. Right-click on the Test Benches caption in the Design Browser and select Add
Project Test Bench from the pull-down menu as shown on the left half of Figure
15.

3. The dialog box shown in the right half of Figure 15 will appear. Name the Test
Bench by typing the text mytb in the form as shown. Leave the HTML Test bench
check box blank.

Figure 15: Create A New Test Bench

4. Click OK. A blank Design Window (the right pane) is displayed. It is here that the
controls forming the Test Bench will be added. The steps below will lead you through
adding a Signal Button Test Bench control labeled send_go that sends the go signal.

5. Locate the Test Bench Builder Toolbar at
the top of the Virtio Innovator screen. If it is not visible, first click View from the Main
Menu Bar then select Test Bench Builder Toolbar.

6. Add a Signal Button to the Test Bench in one of the following ways:

Click the Signal Button icon on the Test Bench Builder Toolbar.

or
Click Add on the Main Menu Bar and select Signal Button.

or
Expand the Test Bench Controls library block in the Design Browser and double-
click on the Signal Button entry.

36

Virtio Innovator - Design Creation Tutorial

Note that the mouse cursor converts to an Add icon.

7. Click anywhere in the Design Window to place the button. This opens the Button
Property Page depicted in Figure 16a.

Figure 16a: Adding A Signal Button Test Bench Control

8. Type send_go in the Caption: box as shown in Figure 16a.

9. Click the Signal tab of the Button Property Page. The Signal Property Page depicted
in Figure 16b will appear (without the drop down menu in the center containing three
lines with the text Tutorial::go, Tutorial::go_more and Tutorial::clk).

37

Printed Documentation

Figure 16b: Selecting A Signal To Inject Into The Protoype

10. Check the Send Signal check box to indicate that a signal is to be injected into the
prototyping engine.

11. To select a specific signal to be injected, open the drop-down menu to the right of
the Signal Name: box by clicking on the icon at the right edge of this box. This menu,
which is shown in the center of Figure 16b, lists all signals in the prototype that can be
injected during a prototyping session. This menu should list Tutorial::go,
Tutorial::go_more and Tutorial::clk.

12. Select the Tutorial::go signal from the menu.

13. Verify that Payload Size is set to None since signal go does not have an
associated payload. [This option is covered by the pull-down menu in Figure 16b.]

14. An action, such as Run, Single-Step, Pause, etc. can be associated with clicking of
the send_go button. In this case set the Action to Run. This will cause the prototyping
engine to commence or resume execution when the send_go button is pressed while a
prototyping session is running.

15. A bitmap can be superimposed on the button using the Bitmap tab, another Test
Bench can be run using the Navigate tab and a custom font can be selected using the
Font tab. For now, however, it is not necessary to use these other features so click OK. A
button with the caption send_go appears in the Design Window. The location of this
button can be changed by dragging it to the desired position.

Now we will add a Register Test Bench control so the value of integer variable a in
the Tester process can be viewed as it changes. Recall that variable a is a count
of how many times the go_more signal has been broadcast from the DUT process,
and it can assume the values 0, 1, 2, etc. It represents how many times
handshaking has occurred.

38

Virtio Innovator - Design Creation Tutorial

16. Click on the Register Control icon on the Test Bench Builder Toolbar shown in
Figure 17. The mouse cursor converts to an Add icon.

17. Click anywhere on the Design Window to place the Register. This opens the Register
Property Page. The Test Bench mytb now looks as shown in Figure 17.

18. Click the Register tab on the Register Property Page and click the Signed box in
the Display as: section.

19. From the drop-down menu next to the Send signal and/or do action caption
(click to see this drop-down menu), select Never to reflect that this Register will not
be used for signal injection.

20. Click on the Variable tab (these tabs are located near the top of the Property
Page) to display the Variable Property Page.

21. Check the Connected to variable named: box to indicate that this register
monitors the value of a prototype variable.

22. Select TutorialTester::a as the variable to be monitored from the drop-down
menu in the Variables section.

23. Click OK. Note that a Register with an initial value of 0 appears in the Design
Window. Its location can be changed by dragging it to the desired position.

Save the Test Bench file mytb.tb by clicking on the Save icon.

Figure 17: Test Bench Builder Toolbar (Top Left) And The Controls in Test Bench mytb

Running a Test Bench

39

Printed Documentation

No special actions are required to run a Test Bench. Whenever a prototype containing
Test Benches is run, a window appears containing the Test Bench controls for that
prototype.

In this section, the Test Bench mytb (created in the Section Creating a Test Bench) is
used to control prototyping of the DUT process by injecting signals. The effect of the
signal injection is also monitored by watching the value of variable Tutorial::a.

To launch Test Bench mytb:

1. Insert a breakpoint in the ready state of the Tester process as described in
Setting Breakpoints.

2. Start the prototyping session by pressing F5 on the keyboard or by clicking the Go

icon. The Prototype Cockpit will be displayed when the prototyping session
first launches, although the session is suspended when it reaches the ready state
of the Tester process due to the inserted breakpoint. The Test Bench mytb
depicted in Figure 18 will open inside the Prototype Cockpit window.

Note: The Test Bench depicted in Figure 18 may be covered by a Messages pane
(which is not the same as the Message Window at the base of the Virtio Innovator
screen) when the prototyping session begins. If so, move the Messages pane (the
Prototyping Cockpit window may need to be expanded first) and the Test Bench will be
behind it in its own pane. Then resize the Test Bench pane to look like that shown in
Figure 18. Be sure to keep the Messages pane visible as Test Bench errors will appear
here.

Figure 18: Test Bench mytb

3. Click on the send_go button in Test Bench mytb.

4. Click on the Single-step icon. Since the prototyping session has stopped in
the Tester process at the breakpoint (in the ready State construct immediately before
the go_more Signal-In construct), one can infer that the go_more signal is about to be
consumed. This implies that a go signal was indeed sent when the send_go button was
clicked since the DUT process broadcasts go_more only after it receives the go signal.

40

Virtio Innovator - Design Creation Tutorial

5. Click on the send_go button again and then single-step to the Signal-In construct
in the Tester process. Since the prototyping session reaches this construct, one can
conclude that the go_more signal was received again. Note that now the Register control
in the Test Bench changes from 0 to 1. Recall that integer variable a in the Tester
process is updated by the payload of the go_more signal, so having its value change from
0 to 1 indicates that handshaking occurred for the second time.

6. Repeat step 5 again to verify that the prototype works as intended.

7. Terminate the prototyping session by clicking the Abort Prototyping Session

icon on the Build/Run Toolbar.

Symbols

In the tutorial prototype created above note that the DUT process relies on shared
global signals (go, go_more, clk) to operate correctly. This design approach suffers from
the following disadvantages:

• Incorrect Operation Due to Conflicting Global Signal Names: If the DUT
Process described above is used as a component in another prototype, any signals in
Processes other than DUT must have unique names. Otherwise all signals sharing the
same name will be activated simultaneously. This can result in incorrect operation in
cases where, for example, a common signal name such as clk is reused in an
urelated block of logic. In addition, the Virtio Innovator might not be able to detect
such name conflicts.

• Difficulty Reusing Logic Blocks: After creating a generic prototype of a
device or subassembly, it is often helpful to make further use of a design or some
portion thereof. However conflicting signal names can severely limit a designer's
ability to do so easily.

• Inability to Readily Customize Reused Logic Blocks: It is frequently
desirable to customize at runtime a generic logic block based on the value of a
specific parameter. One obvious example might be the matching of device clock
frequency to a particular manufacturer’s specification. Shared signal and variable
names mean that the implementation of a prototype must be changed with each
reuse in order implement design-specific customization.

To avoid such problems Virtio has defined in MAGIC-C a graphical construct, the Symbol,
that encapsulates design information and permits easy customization thereof.
Communication between MAGIC-C Symbols occurs through their pins only. As a result
conflicts between global and/or shared signals or variables are no longer an issue.

By using MAGIC-C Symbols and by defining parameters for them, self-contained, reusable
and customizable components can easily be created. Such components can then be
stored in a MAGIC-C Symbol Library for later use. Refer to the Virtio Innovator User’s
Manual for more information on Symbols, parameters and Symbol libraries.

The next two pages, named "Creating Magic-C Symbols" and "Using Magic-C Symbols"
respectively, discuss converting existing Process implementations (for Tester and DUT in

41

Printed Documentation

our case) to Symbols then adding and connecting those Symbols to the top level Block
(tutorial.blk for this tutorial).

Creating Magic-C Symbols

On this page the tutorial design is modified to use MAGIC-C Symbols. Note that there
are three shared signals: go, go_more and clk in the Declaration box of the tutorial
implementation. Therefore, three Symbol pins are required on both the Tester and the
DUT Processes to continue using the same handshaking approach. Start by creating a
Symbol for the Tester Process as follows:

1. Disable the interactive Design Rule Checker (DRC) by clicking Settings on the
Main Menu Bar and selecting Error Checking Off. This is done because the
interactive DRC generates errors during design entry and is not relevant during
this example.

2. Edit the Declaration box of the tutorial Block by deleting declarations for signals
go and go_more, and for clock clk. Shared signals are not used with Symbols.

3. Edit the Tester Process by adding the following to its Declaration box:

clock clk;

4. This effectively makes the clk a local signal inside the Tester Process.

5. To transmit the clk outside the Symbol boundary, a Symbol pin is required. We will
call this pin eclock and will transmit it every time that clk is triggered. To make eclock
a Symbol pin, first add the following declaration to the Tester Process:

extern_signal eclock;

6. Next, add the constructs shown in Figure 19 to the Tester Process. Note that these
do not connect to any of the other constructs created previously. The effect of adding
these constructs is to activate Symbol pin eclock and drive it across the Symbol
boundary whenever local clock signal clk is triggered. This signal is then consumed by
any other Processes that take eclock as an input.

42

Virtio Innovator - Design Creation Tutorial

Figure 19: eclock Symbol Pin Driven by Local Clock clk

7. Now add the following two declarations to the Tester Process to declare that go
and go_more are two Symbol pins of the Tester Process:

extern_signal go;

extern_signal go_more(int);

8. Create a Symbol for the Tester Process, and verify editing of that Process as
follows:

a. Launch the New Symbol Wizard by clicking Edit on the Main Menu Bar and choosing

New symbol Wizard or by simply clicking on the icon on the Symbol Editor

Toolbar. The Symbol Editor Toolbar is located at the top of the Virtio
Innovator screen. [If the Symbol Editor Toolbar is not visible, first click View from the
Main Menu Bar then select Navigate Toolbar.]

b. Check the Make a New Symbol for the Current Document box to make the new
Symbol from the currrent Process, then select Next.

c. Verify that the Symbol Name field reads Tester, indicating that a new Symbol is
being created for the Tester Process (.prc). The Symbol will be stored as a file named
Tester.sym in the current directory.

d. Verify that the Symbol Location (Library Director) shows “.\” as the current
directory for creating the new Symbol for Tester.

e. Click on the Next button to open the Symbol Pins dialog box depicted in Figure 20
(the pull-down dialog box will not be shown when the dialog box first appears; it must be
opened).

f. In Symbol Pins dialog box, type a Pin Name value of go and use the drop-down

menu for Location to select a value of Right. [Display the pull-down menu using the
icon.] Then click on the Add button to create the new pin.

g. Similarly, add go_more and eclock as two other Symbol pins, in that order. Set the
value of the Location field as Right for both the pins. Figure 20 depicts the Symbol Pins
dialog box as the third of the three pins is being added.

43

Printed Documentation

Figure 20: Symbol Pins Dialog Box For The Tester Process

h. Click on the Next button to open the Finish Symbol dialog box. Note that the
Back button can be used to modify any information previously entered for the
Symbol.

i. Click on Finish to create the Symbol. The Design Window now shows the Symbol
schematic or outline as depicted in Figure 21. Expanding the Libraries icon in the Design
Browser (beneath the icon) shows that the new Symbol has been added to the
current directory.

44

Virtio Innovator - Design Creation Tutorial

Figure 21: New Symbol For The Tester Process

9. Now edit and create a Symbol for the DUT Process as follows:

a. Load the DUT Process in the Design Window by double-clicking on the DUT Process
 icon in the Design Browser.

b. Add the following to the DUT Process Declaration box:

extern_signal go;

extern_signal go_more(int);

extern_signal clk;

c. Create a Symbol for the DUT Process using the New Symbol Wizard as described in
steps 8a through 8i above. Note that the Symbol pins should be created in the following
order: go, go_more, clk. They should appear on the left side of the Symbol (to do this,
set the Location property value to Left on the Symbol Pins dialog box). In the Design
Browser, DUT.sym appears as a component in the current directory.

Modifying a Symbol or Its Implementation After Creation
Once a Symbol has been created, either its implementation (the Tester or DUT Process in
the example immediately above) or its graphical representation (depicted in the right
pane of Figure 21) can be edited. It is also easy to move between editing the
implementation (the contents of a Process or Block that appears in the Design Window)
and the graphical representation (shown in the Design Window while in Symbol Edit
Mode) or vice versa.

45

Printed Documentation

To open for viewing or editing a Symbol implementation (Process or Block) while editing a
Symbol (.sym), right-click on the Design Window to display a pull-down menu and choose

Open Implementation. Alternatively, click the Open Implementation button on
the Symbol Editor Toolbar.

To open a Symbol's graphical representation (for the purpose of adding or editing pins,
changing names, adding a parameter, etc.) in Symbol Edit Mode while displaying its
implementation (Process or Block), right-click on the Design Window to display a pull-
down menu and choose Open Symbol. One can also simply press the Open Symbol

button on the Symbol Editor Toolbar.

Using Magic-C Symbols

Now we will use the Symbols for Tester and DUT created earlier to implement our
tutorial design. To do so we must instantiate the two newly created Symbols in the
prototype. To do so:

1. Load the tutorial Block in the Design Window.

2. Select the Tester Process in the tutorial design by clicking once on the
associated Process construct in the Design Window. Now delete it in any one of
the following three ways:

a. By pressing the Delete key on the keyboard.

b. By clicking the icon on the Edit Toolbar.

c. By right-clicking on the Process to display a pull-down menu and selecting Delete.

3. Repeat step 2 above for the DUT Process in the tutorial design.

4. If it is not already visible, open the Design Browser (click View on the Main Menu

Bar and select Browser Window then click the icon at the bottom of the
Browser Window). Then expand the Libraries section at the top of the Design
Browser by clicking on any expand icons () beneath the and
icons. The Library section of the Design Browser will now look like Figure 22a.

46

Virtio Innovator - Design Creation Tutorial

Figure 22a: Design Browser With Library Section Fully Expanded

5. Right-click on Tester.sym and select Add Instance from the pull-down menu that
appears.

6. Move the cursor to the location in the Design Window for placing an instance of the
Tester Symbol and left-click. Note that the instance name is modified when it is placed
(for example, Tester_1). This name can later be changed by right-clicking on the
instance name (having a icon next to it) below the tutorial top level Block in the
Design Browser and selecting Change Instance Name from the pull-down menu that
appears.

7. Repeat steps 5 and 6 to place an instance of DUT.sym. Note that an instance of the
DUT Process appears next to the icon in the Design Browser.

8. Connect the pins of each Symbol as follows:

a. To connect the go Symbol pins for both Processes, left-click on the go Symbol pin of
the Tester_1 instance (note that the cursor has changed to a pencil).

b. Move the cursor over the go Symbol pin of the DUT_1 instance and left-click to
connect.

c. Label the wire connecting both pins by typing a name (for example, g) in text the
box corresponding to the wire. Declare the wire name in a Declaration construct in the
tutorial Block as:

signal g;

e. Similarly, connect the go_more pins of the two Symbols by a wire named gm.

f. Now connect the eclock pin of Tester_1 and the clk pin of DUT_1 with a wire
named c. The following additional declarations are required in the Declaration construct of
the tutorial Block:

signal gm(int);

signal c;

Note: It is optional to name the wires connecting Symbol pins. The Virtio Innovator
uses a temporary wire name for unnamed wires. However, to trace signal values using
the Waveform Viewer, it is recommended that wires be named for easier tracing and
debugging.

47

Printed Documentation

The Symbol version of the tutorial design appears in Figure 22b. The design can be
compiled and the signal values traced as described on earlier pages of this tutorial to
verify that the design behaves in a fashion identical to the non-Symbol version.

Figure 22b: Tutorial Design Using Symbols

9. Now that the Symbol version of tutorial is completed, recompile the prototype
and verify that there are no errors. Then run it to confirm operation, placing breakpoints
and/or modifying elements such as the Test Bench if necessary.

Opening a Symbol or Its Implementation
Once a Symbol has been created and instantiated, either its implementation (the Tester
or DUT Process for example) or its outline (its graphical representation) can be edited. The
methods for accessing each of these are explained below. However let's first define the
three key terms used to refer to Symbol elements in a prototype.

Symbol Implementation

A Symbol implementation is the underlying Process or Block description that describes the
behavior of a Symbol. Figure 23 depicts the Symbol implementation for Symbol instance
Tester_1.

48

Virtio Innovator - Design Creation Tutorial

Figure 23: Symbol Implemenation for Process Tester

Symbol Instance

A Symbol instance represents one placement of a Symbol implementation. It contains the
pins and their names. Figure 24 depicts the Symbol instances for Tester_1 and DUT_1.

49

Printed Documentation

Figure 24: Symbol Instances Tester_1 and DUT_1

Symbol Outline

A Symbol outline is the rectangular graphical representation that specifies the layout for a
Symbol instance. It contains the pins and their names, as well as the name of the
underlying Block or Process. Figure 25 depicts the Symbol outline for Tester_1 in Symbol
Edit Mode. In this mode, it is possible to edit pin names, add new pins, etc.

Figure 25: Symbol Implemenation for Process Tester

Opening a Symbol Implementation While Viewing a Symbol Instance

To display in the Design Window a Symbol implementation (Process or Block) while a
Symbol instance is visible:

• Right-click on the Symbol instance in the Design Window to display a pull-down
menu and choose Open Implementation.

OR
• Double-click on the Symbol instance.

Opening a Symbol Implementation While Viewing a Symbol Outline

50

Virtio Innovator - Design Creation Tutorial

To access a Symbol implementation (Process or Block) from a Symbol outline:

• Right-click in the Design Window to display a pull-down menu and choose Open
Implementation.

OR

• Click on the icon on the Symbol Editor Toolbar.

Opening a Symbol Outline While Viewing a Symbol Implementation

To access a Symbol outlilne while a Symbol implementation is visible in the Design
Window:

• Right-click in the Design Window to display a pull-down menu and choose Open
Symbol.

OR

• Click on the icon on the Symbol Editor Toolbar.

Opening a Symbol Outline While Viewing a Symbol Instance

To open for viewing or editing a Symbol (in Symbol Edit Mode) while viewing an instance
of the same Symbol, right-click on the Symbol instance in the Design Window to display a
pull-down menu and choose Open Symbol.

Code Examples

MAGIC-C
Code Examples

This section contains some MAGIC-C code examples that describe approaches to
common tasks. These examples are expected to help users master the idioms of
MAGIC-C.

51

Printed Documentation

Introduction

The examples of code provided in this chapter illustrate the following:

• Creating process concurrency

• Reset: Bringing an FSM to an initial state

• Starting and stopping a process

• Timers

• Generating clock signals using the clock construct

• Generating a clock signal with a duty cycle of 30%

• Getting the current prototyping time

• Synchronizing data transmission using a clock

• Synchronizing data transmission between FSMs

• Clocked MAGIC-C Loops

• Interrupts

Creating Process Concurrency

In MAGIC-C, concurrency is achieved by separating a design into several processes
(FSMs). Figure 1 shows an example with four concurrent processes.

• Do not abuse the addition of Processes as this reduces the execution speed of
a prototyping session.

• Use multiple Processes only where there are operations that are performed in
parallel in the real system.

• Use C function calls inside of Task blocks for operations that are considered
atomic within the context of the design.

52

Virtio Innovator - Design Creation Tutorial

Figure 1: Creating Process Concurrency

Reset: Bringing an FSM to an Initial State

This is a very useful way to restart all the processes (FSMs) in the system. MAGIC-C uses
broadcast of signals to listeners that are within the scope of the sent signal. Therefore, a
single reset signal defined at the top level (system level) can be used to bring all the
processes in a design to their initial state.

The “*” in a State construct means “every state in this process.” In the example
shown in Figure 2, the current state of the process does not matter. All processes return
to their initial states upon receiving the reset signal.

Every process requires a Start construct to point to its first state. All the initialization

code of a process should be put in a Task construct between the Start and the first
State construct. The initialization code is executed when the prototyping session starts (at
prototyping time zero) and and after every reset signal. As a result of this initialization,
all the processes reach a known state state.

Figure 2: Bringing An FSM To A Known Initial State With A Reset Signal

53

Printed Documentation

Starting and Stopping a Process

MAGIC-C does not support run-time creation and destruction of processes (FSMs). To
achieve similar results, processes can be started and stopped by using explicit signals.

In the example shown in Figure 3, the signal start_process is used to activate the
process, and the stop_process signal is used to halt the process. Whenever the process
receives a stop_process signal, regardless of the state it is in, it changes to the
process_halted state. To resume operation, the process must receive a start_process
signal.

Figure 3: Starting And Stopping A Process

Timers
Timers are signals that are scheduled for broadcast at some future time. Before a timer

can be used, it must be declared in the Declaration box using the timer keyword.
After a timer is declared, it can be scheduled for broadcast at a given prototyping time by
calling the set() function. In the example shown in Figure 4, the timer t is set to expire

in two prototyping time units. To receive the timer message, a Signal-In construct is
used with the name of the timer. Timers can also be stopped before they expire by using
the reset() function.

54

Virtio Innovator - Design Creation Tutorial

A timer example generating a periodic signal clk is given in Figure 4.

Figure 4 MAGIC-C Timers

Generating Clock Signals Using the Clock Construct

MAGIC-C supports generation of clock signals. A clock signal is a timer signal that is set
automatically after being expired. On the left in Figure 5 is the declaration of the clock at
the system level. The right side of the figure shows the setting and stopping of clock
signals.

55

Printed Documentation

Figure 5: Generating Clock Signals Using Clock

Generating a Clock Signal with a Duty Cycle of 30%

When a clock with a duty cycle other than 50% is needed, it is possible to use timers set
to a different expiration time. In the previous example (see Figure 5), stopping the free
running clock required the use of a stop_clk signal to disable system_clk. The stop_clk
signal is input from the clk_high_state to always stop the clock at the high state.
However, the FSMs have no control on when the stop_clk arrives. To make sure that the
stop_clk signal is not lost, this example uses the save construct after the
clk_low_state (Figure 6). If stop_clk arrives when the process is in the
clk_low_state, it is held until the next state to be processed.

A MAGIC-C state requires at least one transition to be a valid state. This example creates
an artificial transition from state idle to state idle upon receipt of stop_clk.

56

Virtio Innovator - Design Creation Tutorial

Figure 6: Generating a Clock Signal With A Duty Cycle Of 30%

Getting the Current Prototyping Time

The earlier examples involved timers and clocks, both of which cause the prototyping
time to advance. In the Virtio Innovator, the current prototyping time can be accessed via
the now keyword. The keyword now is represented as a 64-bit integer. Therefore, when
accessed in the printf function, I64d is used as the type modifier for the __int64
variable.

In the example shown in Figure 7, the arrival time of each of the clock signals is printed.
When the prototyping time reaches 20, a stop_clk signal is sent to the clock generators.

57

Printed Documentation

Figure 7: Getting The Current Prototyping Time

Synchronizing Data Transmission Using a Clock

It is often necessary to synchronize the sending of signals with a system clock. The
example in Figure 8 synchronizes sending of the output_results signal with the clk.

58

Virtio Innovator - Design Creation Tutorial

Figure 8: Synchronizing Transmission Of Data

Synchronizing Data Transmission Between FSMs

When exchanging data between two devices, some form of handshaking protocol is
usually required. Figure 9 depicts logic that requests a piece of data from some other
model in the prototype. Here, the FSM sends a signal carrying the address of the data.
The device then enters a wait_for_data state to wait for the transmission of this data.

59

Printed Documentation

Figure 9: Synchronizing FSMs

Clocked Magic-C Loops

A basic loop structure where the enclosed statements, if any, are executed at each clock-
cycle, is referred to as a ‘clocked loop’.

This section describes how to create standard clocked loops in MAGIC-C of the following
kinds:

1. Do-While / Repeat-Until Clocked Loop

2. Clocked WHILE Loop

3. C-Style Clocked FOR Loop

Do-While / Repeat-Until Clocked Loop

A clocked do-while loop (or repeat-until loop in some languages) is shown below:

<statement1>; // not part of do-while loop

do {

<statement2>;

} while <cond>;

60

Virtio Innovator - Design Creation Tutorial

where <statement2> is assumed to be executed at each user-defined clock, say clk. The
corresponding MAGIC-C code fragment to describe a clocked do-while loop is shown in
Figure 10.

Figure 10 - A clocked DO-WHILE Loop.

Clocked WHILE Loop

Consider the following clocked While loop:

<statement1>; // not part of while loop

while (<cond>) {

<statement2>;

};

where <statement2> is to be executed at each user-defined clock, say clk. It can be
described in MAGIC-C as shown in Figure 11.

61

Printed Documentation

Figure 11 - A clocked WHILE loop.

C-Style Clocked FOR Loop

Consider the following C-style For loop:

<statement1>; // not part of for loop

for (<init_statement>; <cond>; <end_statement>)

{

<statement2>;

};

Using C semantics, we can convert this to an equivalent While loop:

<statement1>; // not part of for loop

<init_statement>;

while (<cond>)

62

Virtio Innovator - Design Creation Tutorial

{

<statement2>;
<end_statement>;

};

Now, using the clocked While loop representation introduced in the previous section, an
equivalent MAGIC-C code fragment can be written as shown in Figure 12.

Figure 12 - A converted clocked FOR loop.

Note: It is trivial to write un-clocked DO-WHILE / REPEAT-UNTIL, WHILE and C-style
FOR loops in MAGIC-C. In corresponding MAGIC-C code fragments shown above,
remove all MAGIC-C State and Signal-In constructs. The resulting code executes the
basic loop structure without any associated (clock) delay.
An unclocked loop can be captured by: (1) a Task construct and nesting this in a
MAGIC-C Decision loop, or (2) by a (ANSI)-C loop inside a Task construct. Both are

63

Printed Documentation

semantically equivalent, and have the same prototyping session performance.
However, the former case allows the Virtio debugger to single step through every loop
instance. In the latter case, the Task construct is executed in a single step, and no
breakpoint can be set on a loop instance.

Interrupt

The behavior of an interrupt can be modeled in MAGIC-C by making use of two State
constructs, one containing a star (i.e. ‘*’) and one containing a dash (i.e. ‘-’), as depicted
in Figure 13. The star State assures that the interrupt is sensitive in all States of the left
hand MAGIC-C graph (the right hand graph represent the interrupt servicing). The
interrupt servicing behavior is captured in the Task construct in between the two States.
The dash State causes the execution to be resumed in the State in which the Process was
at the moment the interrupt Signal occurred.

Figure 13: Modeling An Interrupt In MAGIC-C

Matched Filter Design

Overview

64

Virtio Innovator - Design Creation Tutorial

In this chapter, we start with the specification of a simple matched filter. Then,
using the Virtio Innovator, a MAGIC-C description of the matched filter will be
constructed. The design will then be refined to some degree. An in-depth
understanding of the process involved in using MAGIC-C in a functional design
will be reached by the end of this chapter.

Introduction

The following topics are covered in this chapter:

• Matched filter specification

• System partition

• Specification of matched filter (initial version)

• Adding delay and time in the model

• Using reset in a MAGIC-C model

• Handling protocol refinement in MAGIC-C

• Summary

Matched Filter Specification

Matched filters are commonly found in signal processing applications. For example, in
simple radar, a matched filter can be used to filter out some of the noise in the returned
signal. It can also pick out the peaks from the reflected signal. Implementation of a
matched filter is application specific. The C code that represents a specific implementation
of a matched filter is as follows:

void matched_filter (int din_prev, int din_now, int *acc_img, int
*acc_real)

{

// Depending on the phase the filter is in, we need

// to change the polarity of some input data.

static int phase=0;

int data_prev, data_now;

static int tap[31]; // taps of the filter

// coefficients of the filter

int coef[16] = {-11, -94, -130, -75, 57, 189, 219, 89,

-161, -389, -409, -98, 528, 1288, 1909, 2149};

int i;

65

Printed Documentation

// initialized all taps to have zero value

for(i=0; i<31; i++)

tap[i] = 0;

if (phase==0) {

data_prev = -din_prev;

data_now = din_now;

phase = 1;

}

else {

data_prev = din_prev;

data_now = -din_now;

phase = 0;

}

// shift the taps

for(i = 30; i >= 2; i--)

tap[i] = tap[i-2];

tap[0] = data_now;

tap[1] = data_prev;

*acc_real = tap[15]*coef[15];

*acc_img = (tap[14]+tap[16])*coef[14];

for(i=0;i<=13;i+=2) {

acc_img += coef[i](tap[i]+tap[30-i]);

acc_real += coef[i+1](tap[i+1]+tap[29-i]);

}

} /* end of matched_filter */

The matched filter takes in two input data and generates results in the form of a complex
number. This type of system specification is commonly used in modern digital design. It
captures the essential operations performed by the system using concise "C"
programming constructs. In fact, many new IEEE standards use this form of
representation to supplement the verbose description.

Note that even though the C description of the matched filter contains the essential
operations of the filter, it requires additional analysis to test, and subsequently
implement, the system in hardware.

In the following sections, the main steps of a top-down design in MAGIC-C are described.

System Partitioning

66

Virtio Innovator - Design Creation Tutorial

System partitioning is the process of defining the internal structure of the design. It
involves understanding all operations performed by the design and dividing the design
into smaller functional blocks. This division of a large program into smaller modules (or
objects) is analogous to designing software. Similar to using interfaces for modules
interaction in software, functional blocks in hardware communicate using signals passing.
In general, a well-partitioned system fulfills the following requirements:

• Strong cohesion within a module: This means that all the functions performed
by a module are closely related.

• Loose coupling between modules: This means that the dependencies between
different modules are minimized.

While it is difficult to concretely measure these metrics, it is important that architects
strive for these goals. In the previous, since an understanding of the matched filter is
limited, it is sufficient to model it as one big MAGIC-C block, called Filter. This block is
refined as the implementation proceeds.

Another aspect of system partition is the interface with respect to other systems. In the
previous example, the interface is fairly straightforward. The matched filter receives two
integers from the outside and returns the processed information in the form of a complex
number. Based on this observation, it is obvious that another system needs to be
modeled that will generate data to the matched filter if the intent is to test the final
model. This additional system is called Data_generator.

With the this information, the first cut system description of the matched filter can be
entered in MAGIC-C. Figure 1 shows the first version of the matched filter system.

Figure 1 Match Filter System

In addition to declaring two communicating processes, Data_generator and Filter, we
also declare some communicating signals between the two blocks are also declared. Note
that signals in MAGIC-C are really messages sent from one finite state machine (FSM) to
other FSMs. A MAGIC-C signal by itself does not contain any information other than an
event occurrence. Additional information can be associated with a signal as shown in the
previous example. Specifically, the signal din is declared to carry a payload of two

67

Printed Documentation

integers. Making an analogy to datapath/control design, signals are like the control part
of the design, while the payloads are like part of the datapath.

In the C specification of the filter, there is an implicit synchronization between
Data_generator (that exercises matched_filter) and Filter (by the nature of
sequential processing in C). Such synchronization has to be explicitly instrumented in the
MAGIC-C framework since all FSMs in the design run in parallel. In this example, a simple
protocol is followed: When Data_generator has data to be sent to the filter, it sends the
signal din, together with its payloads to notify the filter. The matched filter then
proceeds to process the data. At the same time, Data_generator waits for the operations
to complete. When the matched filter is finished with its job, it sends a get_next_data
signal to notify Data_generator that it is ready to accept new data.

Specification of Matched Filter (Initial Version)

Even though an understanding of the matched filter is still limited at this point, with the
"C" code specification, the system partition and the communication protocol in the
previous section are enough information to complete the first draft of the design.

The system which will be designed here will consist of the following two parts:

1. Data_generator Specification

2. Filter Specification

Both are treated below in detail.

Data Generator Specification

To proceed, assume the following test scheme is used:

• Data_generator iterates 5 times. Each time, it sends two input data to the
matched filter. The input data following the sequence of 0, 1, 2 ... 9. After the
iterations, both Data_generator and matched filter are idle.

The process level description of the Data_generator is shown in Figure 2. For semantics
of MAGIC-C constructs, refer to the MAGIC-C Language Reference Manual.

The process begins with the Start state. Naming of the Start state is optional since it
only indicates where to begin when the prototyping session starts. Following the Start
state, the user can perform any initialization work as desired. In this case, we initialize
the variable i to 0.

The process then enters into a state called idle. The State and Signal-In MAGIC-C
constructs appear together throughout most of the design. To transition into a state, the
FSM (process) has to wait for a signal specified by the user. When state and Signal-In are
used together, it can be interpreted as followed:

1. The next state of the precedes is the state specified.

68

Virtio Innovator - Design Creation Tutorial

2. The process waits for the signal specified.

3. When the signal arrives, the current state of the process is assigned to the
value of the next state determined in #1 above.

In the example, the Data_generator process enters the state idle upon receiving the
signal get_next_data. Note that the state transition does not happen until the
get_next_data signal arrives.

The first thing after entering the idle state the process first checks to examine the value
of i using the Decision MAGIC-C construct. If it is less than 10, it sends out the signal din
(with its payload of i and i+1). Note that true is a keyword in MAGIC-C. If i is greater
than or equal to 10, the process simply reverse to the original state. This means that
after it sends out din five times, it ignores any invitation for sending additional data.

The Task box after the Decision construct can contain any legal C constructs. In this case,
we increment i by 2.

When the Data_generator is finished with the iteration, it reverts to the original state
and waits for the next get_next_data signal. This is how to accomplish the
synchronization described previously. The "-" label in the state is an abbreviation for the
current state.

69

Printed Documentation

Figure 2 Data_generator Process Specification

Filter Specification

The specification of the Filter process is shown in Figure 3. As seen from the diagram.
Most of the C code in the original specification is used directly in the design. This
illustrates the attractiveness of the system. It provides an easy way to map a high-level
concept into a framework in which fast prototyping and gradual refinement can occur. As
the design complexity increases, it is important to obtain relatively accurate and quick
results at the initial design phase. By providing a simple path that bridges the gap
between high-level algorithmic concepts and a reasonable prototyping model, the
opportunity for performing architectural exploration is greatly enhanced.

70

Virtio Innovator - Design Creation Tutorial

Figure 3: Matched Filter Specification

In general, architectural exploration intends to answer the following questions:

1. Does the proposed algorithm work?

2. If the algorithm is correct, how well does it work in terms of resource usage and
the operating speed?

MAGIC-C answer the first question by providing a fast prototyping environment. Once the
model is constructed, the user can verify the model by generating an executable file of
the prototype that can run within the system.

To answer the second question, the user performs manual analysis on the model to
determine the amount of resources it consumes and the latency of the system. Many

71

Printed Documentation

classic architectural-level synthesis and optimization techniques are applicable. See
Synthesis and Optimization of Digital Circuits, by Giovanni De Micheli.

It is important to understand the transparency of signals in MAGIC-C in order to construct
a correct model. Essentially, any signal declared in a block is visible in all blocks and
processes under it, unless the signal has been encapsulated inside a symbol.

In the example, due to its simplicity, global signals are used to illustrate communication
between the processes. For larger designs, signals should be encapsulated inside
symbols.

The model constructed so far is an untimed model. Like most tools for prototyping logic,
combinational operation assumes zero delay for completion. Hence, from the system
prototyping point of view, all five iterations of testing happen at the same time. While this
model is useful for logic verification, the design needs to be refined further if it is to be
implemented in hardware.

Adding Delay and Time to the Model

The timing details are one of the most important attributes of a system under design.

In this section, modeling some of the timing requirements refines the design. To do this,
the following micro-architecture specifications are added to the design:

1. The data sent from Data_generator to matched_filter is synchronized with
respect to the clock edge

2. The latency of the matched_filter cannot exceed 16 clock cycles

To support the clocking used in the system, we will use the clock data type in MAGIC-C. A
clock signal can be scheduled to trigger periodically. It is achieved by using the set()
built-in function in MAGIC-C. The Data_generator triggers the clock.

Since Data_generator now performs two distinct functions: sending data to
matched_filter and generating a clock signal, it is desirable to partition it into smaller
blocks.

The final structure of Data_generator is shown in Figure 4. It is made to be a block
(instead of a process) which contains two parallel processes: clock_gen and send_data.
The clock_gen process generates the clock signal, clk_high. The send_data is
responsible for sending the data to the matched_filter with proper attention to the
clock. Their structures are shown in Figure 5.

72

Virtio Innovator - Design Creation Tutorial

Figure 4: New Data_generator Block

In the clk_gen process shown in Figure 5, a timer t is used to allow a transition into a
real state. The set command in the Task block indicates that t is triggered 1 prototyping
time unit after current time (now). When the clk_high is set, it is triggered every 2 time
units.

Note: The difference between a timer and a clock is that timer is only triggered once.
However clock is triggered continuously once it is set (unless it is being reset). See the
Virtio Innovator User’s Manual for more information.

73

Printed Documentation

Figure 5 Description of clk_gen Process

The send_data process shown in (Figure 6) is very similar to the original Data_generator
shown in Figure 2 except that it waits for the clk_high signal before sending the data out
(din). By doing so, data is only sent to matched_filter at the clock edge.

Figure 6 Structure of send_data Process

Using Reset in a MAGIC-C Model

This and the following sections illustrate how to refine matched_filter and react to
changes in design specification.

Initialization in MAGIC-C is done in the Start state. While this is an intuitive approach, it is
difficult to implement in hardware. Normally, initialization in actual hardware is done
using reset signals. It is easy to reset mechanism in MAGIC-C, as illustrated in the
revised design of the filter as shown in Figure 8.

74

Virtio Innovator - Design Creation Tutorial

Figure 8 Revised Filter Design Using Reset

Note: The use of "*" state. It actually represents all the states in the FSM. Thus, in the
example, whenever the reset_high signal is received, all the taps is set to zero, and
the FSM transitions to the done_reset state upon receiving the reset_low signal. No
additional initialization is needed now assuming that reset_high and reset_low are
appropriately triggered when the system simulation starts.

75

Printed Documentation

Also note the use of explicit delay. After calculating the results, the filter does not send
out the get_next_data signal immediately. Instead, it first waits for 16 cycles. In
essence, this emulates the delay expected for the whole operation. This could be a useful
modeling technique if the development of other parts of the system is well ahead of the
current component. Integration and meaningful system testing can be done with good
accuracy.

The setting of reset_high and reset_low are done in clk_gen process (for simplicity),
and the modified design is shown in Figure 9.

Figure 9 Revised Design of clk_gen

In the design, reset is asserted (by means of sending reset_high) for 8 clock cycles.
After that reset is de-asserted (by means of sending reset_low) followed by asserting
the clock.

Note: By using two signals, we can always model a level-sensitive signal like reset.

Handling Protocol Refinement in MAGIC-C

The final illustration demonstrates how to accommodate the change in communication
mechanism used in the system. Assumes that the results of a micro-architecture study
indicate that the neighborhood of matched_filter is very crowded, and the routing
capacity around the area is very limited. Thus, is desirable to reduce the two dedicated
buses (represented by two payloads of signal din) going into matched_filter to just
one. Input data is given one at a time in different time phases.

Eliminating one of input buses has the following impact on matched_filter:

76

Virtio Innovator - Design Creation Tutorial

• Extra storage is required to store the first input data (and maybe for the
increased number of states).

• Latency of the filtering operation is increased.

A designer would probably study these impacts carefully before committing to the
change. Assuming the trade-off is desirable, the system is modified (as described below)
to accommodate the micro-architectural change.

First, din is changed to carry one payload of integer instead of two. Second, the
send_data process is changed, as shown in Figure 10, to model the two phases of data
input.

Figure 10 send_data Process Modified for Sending din (int)

An extra state, send_two, is introduced in the send_data process, and the original send
state is renamed to send_one.

The change in the filter block is more extensive. Instead of changing it directly, it may be
desirable to rethink the partition of the block. Currently, it is only represented using one
FSM. Experiences in large design projects show that changes that occur at the later stage
of the design happen mainly in the control part and interfaces between blocks. These
changes are most likely to be caused by timing change, area concern and routing
capability. While it is difficult to predict exactly the kind of changes that will take place, it
is possible to design the system to reduce the impact caused by changes to system
requirements. For example, matched_filter can be viewed as two separate parts:

77

Printed Documentation

1. The part that accepts input data from outside.

2. The part that processes the input data.

This may seem like a trivial view of the system, but implementation using this approach
can be tremendously beneficial in certain cases. In our example, this approach would
result in changes in the protocol only affecting the first part of the system.

Based on the this observation, the filter process is modified as shown in Figure 11.

Figure 11 - Final Structure of the Filter Block

The original filter process is made into a block with two separate processes, Match and
GetData. They communicate with the datain signal, which assumes the previous form of
din, which carries two payloads.

The GetData process shown in Figure 12 is responsible for receiving input data from
Data_generator. It assigns the input data to the payloads of datain during the different
phases of the operation.

78

Virtio Innovator - Design Creation Tutorial

Figure 12 Phased Operation of GetData Process

The Match process is very similar to the original filter process. The original input signal
din is replaced by datain. In the original filter process, the polarity of certain input data
is changed according to the phase. In the new Match process, this function is moved to
GetData.

79

Printed Documentation

Figure 13 Match Process Using datain Signal from GetData

Summary

As illustrated in the example using matched_filter, MAGIC-C is a good language for
high-level system design. The various constructs in MAGIC-C enable designers to model
complex operations with relative ease. The communication mechanism used in the
language is also quite simple to understand.

The Virtio Innovator is an ideal platform for doing MAGIC-C design. By integrating design
entry, advanced debugging capabilities, very fast prototyping and code generation
capabilities in a single environment, a designer’s productivity is greatly enhanced.

UAR Design

80

Virtio Innovator - Design Creation Tutorial

UAR Design
Using MAGIC-C

In this chapter, we will design and test a simple Universal Asynchronous
Receiver (UAR) using the Virtio Innovator. First, using the Virtio Innovator and
the Test Bench builder, we will create a framework of GUI and non-GUI test
benches. When the UAR is finally written in MAGIC-C, it should work seamlessly
with the test benches. We will concentrate primarily on refining our design
framework so that when the UAR is plugged into the design, we can easily
determine if the UAR is functioning correctly. The increasing levels of
refinements to our design and test framework constitute the bulk of this chapter.
A good knowledge of Virtio Innovator Test Bench controls is assumed. As a final
step, we will describe the UAR at Register Transfer Level (RTL). Note that for
simplicity, we will just sketch the basic modules of the design; you can refer to
the UAR Design Example directory for complete details about the design.

Introduction

The following topics are covered in this chapter:

1. Universal Asynchronous Receiver Specification

2. Basic Test Bench Framework

3. Refinement Steps for the UAR Framework

4. Specification of UAR Framework (initial version)

5. Adding Delay to Image_gen model (version 2)

6. Data Transfer in BYTEs (version 3)

7. Data Transfer in BITs (version 4)

8. Using UAR for Serial Data Reception (Final Version)

9. Summary

Universal Asynchronous Receiver Specification

81

Printed Documentation

Figure 1: Universal Asynchronous Receiver Model

Figure 1 shows a simplified picture of an asynchronous serial interface of the type
commonly used to transfer data in computer and communications systems. The mode of
data transfer between the transmitter and the receiver is referred to asynchronous
because the transfer over a serial transmission link is not controlled by or locked to a
common clock. The clock controlling the transmission rate (Tx clock) and the clock to
synchronize the receiver (Rx clock) are nominally of the same frequency, but are
generated locally at each end of the transmission link and therefore cannot be assumed
to be locked.

The spacing between the transmitted characters (represented by 8-bit data) may be of
any length. In contrast, the timing of the bits within the character is well defined (and is
related to the bit/baud rate of the interface). The receiver must be able to detect the
start of an incoming character and then store the value of each data bit, despite the fact
that the relative frequency and phase of the Tx and Rx clocks may vary. In this example,
we will concentrate on developing a RTL level UAR; the transmitter will be an abstract
representation for simplicity of modeling.

82

Virtio Innovator - Design Creation Tutorial

Figure 2: Data Format And Sampling Detection For The UAR

As shown in the data diagram in Figure 2 (a), the beginning and end of each character is
delimited by a start bit whose value is always 0, and a stop bit whose value is always 1.
In between characters, the transmitter outputs a constant value of 1. In operation, the
receiver continually samples the input data.

Following a 1→0 data input transition, the eight data bits must be stored. Storing the
data bits reliably is a potential problem, since for maximum reliability we wish to sample
the data bits in the center of their bit times and not close to either edge, so that small
differences between the Tx and Rx clocks can be accommodated. This may be
accomplished by using an Rx clock frequency that is a multiple of the data bit rate. In our
UAR design, we shall assume that the Rx clock signal is eight times the bit rate.

Following the detection of a start bit, the first data bit is input at the center of the bit time
12 clock cycles later as shown in Figure 2 (b). The stop bit should be detected 76 clock
cycles later as shown in the figure. If so, the Data Available output is set high; if not,
the Framing Error output is set. Both status outputs are reset low by the detection of
the next start bit.

Change in Specification: Noise Resistant Behavior

83

Printed Documentation

Danger of spikes is suspected on the communication channel falsely starting the receiver.
This means that a momentary LOW on the input to the receiver would be seen as a one-
to-zero transition whereas it is really just noise.

To counter this, the specification is changed as follows:

The start bit is a one-to zero transition where the input signal is still zero four (or
three or five) samples later.

Thus, the design should handle the above bit pattern to detect a valid start bit. The
flexibility of 3-4-5 clock periods in the specification allows the simplest implementation.
For this design, we use 5 clock periods after a high on the input.

In the following sections, the main steps in doing a top-down design in MAGIC-C will be
given.

This UAR based design will probably of medium complexity because we need to model
both a transmitter and receiver. So, we choose to use MAGIC-C symbols for representing
every module in the design. Specifically, no shared signals will be used for communication
protocol modeling.

Basic Test Bench Framework

Since the UAR is a basic component for a serial data receiver, we first plan to model such
a receiver at an abstract level. Let’s call this process Receiver with the UAR as a sub-
module for data reception and conversion.

Now, the Receiver might potentially be any data-processing device. We arbitrarily
choose to model a device that accepts frames of video data and displays it on a LCD
screen. For simplicity, we will assume that the video data is raw, uncompressed data.

For our purposes, a video data frame will be represented by a bitmap with following
information: width of the bitmap, its height, number of bytes needed to represent each
pixel, size of the frame data (in bytes), and finally, a pointer to the frame data.

Also, we will, as a first approximation, assume a one-way handshaking mechanism for the
Receiver. That is, after receiving each frame of data, it will send out a DataReceived
signal as an acknowledgement to the (Universal Asynchronous) Transmitter that sent the
data.

So, the Receiver should have one pin for an input signal, say

RecvData(int/*FrameWidth*/,

int/*FrameHeight*/,

int/*FrameNPixels*/,

int/*FrameSize*/,

BYTE* /*DataBuffer*/)

84

Virtio Innovator - Design Creation Tutorial

and an output signal DataReceived to indicate receipt of a frame of data.

Based on this observation, it is obvious that we need to model another system that will
generate some data to the Receiver if we intend to test the final model. Let's called this
system Image_gen that generates some video image frames to be used for testing the
Receiver.

With the above information, we can describe the first cut system description of the UAR
framework in MAGIC-C as shown in Figure 3.

Figure 3 – UAR Framework.

Communication Protocol

Note the simple protocol for data exchange between both the modules: when Image_gen
has video frame data to be sent to the Receiver, it sends the signal datastream (with
the data as its payload) through its pin TransmitData to notify the Receiver on its
RecvData pin.

The Receiver then proceeds to process the data. At the same time, Image_gen will wait
for the operations to complete. When the Receiver has finished processing the current
data frame, it sends a DataReceived signal to notify Image_gen that it is ready to accept
new data.

User-Defined Data Type Across Model Interfaces

In the payload of the RecvData, the frame data is represented by a pointer to a BYTE
array. Now, since BYTE is not a built-in data type, you can define a new data type by
editing the user.h and adding

85

Printed Documentation

typedef unsigned char BYTE;

In general, you can define any new data type required to model your design. We will see
later how we can define additional data types and C++ templates to model designs of
increasing complexity.

Refinement Steps for the UAR Framework

We intend to refine the UAR Framework in stages using various constructs of MAGIC-C,
with each stage showing refinements in one or more of the following aspects:

• Data types used in the design

• Timing constraints of various components

• Communication protocol among components

• Modeling abstraction of components (whether behavioral, algorithmic, RTL
etc.)

Table 1 indicates the refinements performed in five stages. The details and rationale for
the refinements will be discussed in the following sections.

STAGES REFERENCES REFINEMENTS

Initial
Version

Section
Specification
of UAR
Framework
(initial
version)

• Untimed model of the
UA Transmitter
(Image_gen) and
Receiver (Receiver
module).

• Data transmitted
consists of a pointer to
video frame data.

• Communication
between modules
using Handshaking
Protocol.

Version
2

Section
Adding Delay
to Image_gen
model
(version 2)

• Timing added to UA
Transmitter
(Image_gen). A rough
clock period is used for
the transmitter.
Receiver is still
untimed.

• Handshaking no longer
used for
communication.
Transmitter broadcasts
data independently of
Receiver.

86

Virtio Innovator - Design Creation Tutorial

Version
3

Section Data
Transfer in
BYTEs
(version 3)

• Data transmitted in
the serial link is in
units of a user-define
data type BYTE.

• Communication
protocol enhanced;
Transmitter indicates
beginning of a video
frame by sending
BeginFrame signal.

• Clock period of
Transmitter adjusted
for handling detection
of beginning of a video
frame by the Receiver.

Version
4

Section Data
Transfer in
BITs (version
4)

• Data transmitted in
the serial link is in
units of another user-
define data type BIT.

• Clock period of
Transmitter adjusted
further for handling
detection of beginning
of a video frame by
the Receiver.

• A high-level model of
UAR added to the
design.

Final
Version

Section Using
UAR for Serial
Data
Reception
(Final
Version)

• Transmitter made
compliant to a UAR
specification.

• Timed version of
Receiver modeled.

• A timed, RTL model of
UAR replaces the high-
level model.

Table 1: Refinements For The UAR Design

Inital version
Specification of UAR Framework (initial version)

With the basic system partitioned and the handshaking communication protocol defined,
we have enough information to complete the first draft of the design.

This version relies on the Image_gen module to send a pointer to the bitmap data that is
processed by the Receiver module. So, there is additional code to allocate memory for

87

Printed Documentation

the bitmap data in both the modules. Also, as a space optimization, if the previous frame
has the same dimensions as the current frame, we reuse memory allocated for the
previous frame to store the new frame information. These details are not central to the
design and will not be discussed in the following sections.

Image Generator Specification

We model the Image_gen module such that we can control operations of this module via
an associated Virtio Innovator Test Bench, say Send_data.tb. Note that by using the Test
Bench, we can also test in a prototype the asynchronous behavior of a data generator by
starting and stopping it at any point in time.

For our purposes, we will send six LCD frames from Image_gen one at a time. To store
the frames, declare the VS_LCD variables frame1, frame2,…, frame6. We then
connect these variables with six corresponding LCD/Bitmap Test Bench controls in the
Virtio Innovator Test Bench Send_data.tb.

Also, to indicate to the user the current LCD frame being processed, declare the VS_int
variables led1, led2, …, led6 to represent LEDs, one for each frame. Then, these VS_
variables are connected to Test Bench.

The Figure 4 shows a portion of the Test Bench where the VS_LCD and VS_int variables
have been connected to various Test Bench controls.

Figure 4: Connecting Variables To Test Bench Controls (send_data.tb)

To control the operations of the Image_gen from the Test Bench, define two internal
MAGIC-C signals: CopyImage to start sending of each frame and SenderReset to stop
any ongoing activities. Resetting will also send out an “empty” frame with frame data
containing only 0s.

To send out the above signals CopyImage and SenderReset from the Test Bench
Send_data.tb, create two signal buttons named transmit and Reset and connect these

88

Virtio Innovator - Design Creation Tutorial

buttons to the two signals respectively, so that the Test Bench appears as shown in
Figure 5.

Figure 5 - Send_data.tb Test Bench.

The process begins with the start state. After performing some initializations like
settings all LED’s to 0, Image_gen will enter the wait_for_transtb_sig state.

When the user clicks on the transmit button in the Test Bench, signal CopyImage is sent
to Image_gen. On receipt of this signal, it starts transmission of frames. After
transmission of each frame, it goes to the wait_recv_ack state to wait for the
acknowledgement from the Receiver as shown in Figure 6.

89

Printed Documentation

Figure 6: Simplified Description Of Image_gen (Version 1)

After receipt of the DataReceived signal from the Receiver, Image_gen continues with
transmission of the next frame. Refer to Uar_Design_Example\uar_step1,
Image_gen.prc (pages 2 and 3) for more details.

At any point while running a prototyping session, if the user clicks on the Reset button,
SenderReset signal is sent. Image_gen will send an “empty” frame containing all 0’s and
enter the Wait_for_transtb_sig State again (Uar_Design_Example\uar_step1,
Image_gen.prc, page 1).

Receiver Specification

Like the Image_gen module, the Receiver module is to be modeled such that we can
control operations of this module via another associated Virtio Innovator Test Bench, say
Receiver.tb. Using this Test Bench, the Receiver can be operated asynchronously at
any point in time.

The Receiver receives each frame of video data and stores it in VS_LCD variable
recv_frame. This variable is connected with a LCD/Bitmap Test Bench control in the Virtio
Innovator Test Bench Receiver.tb.

The Receiver begins with a Start state. After performing some initializations, Receiver
enters the wait_for_transmitter state.

On arrival of RecvData signal, it processes the bitmap data. After the processing is over,
this module sends back the DataReceived signal to acknowledge receipt of a data frame.
A simplified version is shown in Figure 7. Refer to Uar_Design_Example\uar_step1,
Receiver.prc for implementation details.

90

Virtio Innovator - Design Creation Tutorial

Figure 7: Simplified Receiver Model

Simulating the design shows that the Image_gen and Receiver behave as expected when
frame data transmission is done. The Figure 8 shows the receiver displaying the second
video frame. Note that the system prototype can be run at a very high speed because it
has been modeled at a high level of abstraction.

91

Printed Documentation

Figure 8: Second Video Frame Being Displayed

The model we constructed so far is an untimed model where all frames are sent and
received at the same time step. Furthermore, we rely on an artificial handshaking
protocol for reliable transfer of data; no handshaking should be required for a serial data
transfer.

Version 2
Adding Delay to Image_gen model (version 2)

As mentioned in the previous section, Image_gen should not wait for an acknowledgement
from the Receiver before sending the next frame of data. The Receiver might in fact be
non-operational when the data is being sent. We will perform communication protocol
refinement between the two modules by removing the handshaking protocol needed in
the previous version of the design. We will also create a timed model of Image_gen by
adding delay to the model.

92

Virtio Innovator - Design Creation Tutorial

First, we create a new module called clkgen as shown in Figure 9 which generates a
periodic clock of a given period (default = 80 time units). The operation of this module
can be controlled by reset and enable pins. The clock period is a VS_PARAM and can
be modified on a per-instance basis at compile-time (VS_PARAMs are run-time
constants).

Figure 9 - clkgen process (a), and clkgen symbol (b)

First, we create another module called a Data_generator that contains a modified
Image_gen connected to a clkgen module as shown in Figure 10.

93

Printed Documentation

Figure 10 - Image_gen connected to a clock.

The Image_gen module now no longer waits for an acknowledgement from the Receiver.
Instead, Image_gen transmits a frame every time its Tx port is triggered by the clkgen
instance cg1 as shown in the above figure. Accordingly, the modified description of
Image_gen is as shown Figure 11. Contrast this description with that of version 1 (Figure
6). The clock period requirements of instance cg1 is calculated as follows:

INFORMATION SIZE (IN

BYTES)

Frame Width 4

Frame Height 4

No of bits per Pixel 4

Frame Size 4

Frame Information 236472

Total Number of bytes per frame 236488

Table 2 - Video Frame Information.

Assuming a bit-rate of 1 bit / 80 clock cycles, transferring 1 byte needs 640 clock cycles;
so a frame can be completely sent in 236488 * 640 = 151.352.320 clock cycles.

94

Virtio Innovator - Design Creation Tutorial

Figure 11 - Simplified description of Image_gen (version 2).

Correspondingly, Receiver does not send an acknowledgement (DataReceived signal)
anymore on receipt of a data frame. Also, because we know that the actual Receiver will
contain a UAR, we put the Receiver module inside another module called uar_receiver.
For details, see Uar_Design_Example\uar_step2.

Version 3
Data Transfer in BYTEs (Version 3)

In both versions 1 and 2 of the design, the data types used for transfer was highly
abstracted; we sent a list of information as shown in Table 2 as payloads to
TransmitData signal. In particular, the data frame information was sent as a pointer to a
BYTE array. For sake of discussion, let’s refer to such signals (with video data frame
information) as parallel data.

In actual devices, we send binary data over an established serial link. So, we will perform
data type refinement by sending and receiving frame data in units of a BYTE rather than
parallel data as in version 2. Note that we have defined BYTE as a user-defined data type
in user.h, as described in section User-Defined Data Type Across Model Interfaces.

Now, the version 2 of the design used only parallel data/signals. To reuse existing
modules from this version of the design, we can plug in a parallel data-to-BYTE converter
as a back-end in the existing Data_generator. Essentially, the new Data_generator
transmits in terms of BYTEs.

95

Printed Documentation

Similarly, we can plug in a reverse BYTE-to-parallel data as a front-end in the
uar_receiver. This makes uar_receiver capable of receiving BYTE data. These
converter modules should then be placed as shown in Figure 12. The converters have
been shown by grayed rectangles.

Also, note that since the data transfer is in BYTE, the receiver needs to identify the
beginning of a video frame. The Data_generator sending a BeginFrame signal
accomplishes this; the receipt of this signal to uar_receiver indicates beginning of
transmission of a new frame data. So, both the converters have an extra pin to
send/receive the BeginFrame signal.

Figure 12: Parallel ↔ BYTE Converters In Version 3 Of The UAR Design

Now, before designing the converters, we need to write some utility functions to split an
unsigned integer (4 bytes) into 4 1-byte blocks and combine 4 1-byte blocks to a single
4-byte chunk (integer). These functions can then be used to split integer payloads like
Frame Width, Frame Height etc. in the Data_generator for transmission over the data
link. On receipt of 4 consecutive 1-byte blocks, we can combine them to obtain the
specific data again in the uar_receiver. For sake of performance and re-usability, we
define two C++ template functions in user.h.

template <class F, class T> int unpack(F val, unsigned int
val_size, T arr[], unsigned int ele_size);

template <class F, class T> int pack(F const arr[], unsigned int
ele_size, T &val, unsigned int val_size);

The unpack function does the splitting into blocks of specified size. The pack function
combines multiple blocks to create a bigger chunk.

96

Virtio Innovator - Design Creation Tutorial

By using this functions, the design of the converters become simple.
Parallel Data-to-BYTE Converter

The design of Parallel Data-to-byte converter is simple. We first create a module, say
Send_data that splits the parallel data received from Image_gen into BYTEs and then
transmits it. A clock, say cg2 connected to it, should drive this module. Then, every time
the clock cg2 connected to send_data is triggered, we send one BYTE of information.
Such a converter is shown in Figure 13 (a).

The Figure 13(b) shows how send_data packs and sends frame width information. Here,
we assume that the parallel data has been already received and variable FrameWidth has
been initialized to the correct value. Then, using the unpack template function described
above, we unpack the value of FrameWidth (32 bits) into 4 8-bit chunks which are stored
in the bytebuf array. Similar processing is done for all other payloads of the parallel data
such as frame height, frame size etc.

Figure 13 Parallel data -to-BYTE converter (a), and Send_data process (b).
BYTE-to-Parallel Data Converter

The BYTE-to-Parallel Data Converter module, say MakeFrame is also very simple. Each
BYTE constituting a payload of the parallel data, say FrameWidth is temporarily stored in
bytebuf array as they arrive from the Data_generator. When all the four bytes are

97

Printed Documentation

received, the array is packed and the value is assigned to FrameWidth. Similar processing
is done for all other payloads. This MakeFrame converter is shown in Figure 14. Finally,
the parallel data so retrieved from BYTEs is sent to Receiver.

Figure 14 - BYTE-to-Parallel Data symbol (a) and how it packs FrameWidth from four bytes (b).
Modified Clock Period Requirements

There are now two instances of clkgen connected in Data_generator module; clock cg1
is connected to Image_gen module (Figure 12) as in version 2 and clock cg2 has now
been connected to the send_data module (Figure 13(a)). We identify/refine the clock
period of both the clocks here.

Note that we are sending another signal BeginFrame to the receiver so that it can identify
beginning of a video frame. For simplicity, we assume that this transmission takes the
same time as a BYTE of data. Now, since transmitting 1 byte needs 640 clock cycles, we
add this to the total clock cycles required for transmitting one video frame information
(151,352,320 + 640 = 151,352,960 clock cycles) to obtain the clock period for clkgen
instance cg1.

As for clock cg2, send_data sends out one byte at a time, making the required clock
period to be 640 clock cycles.

Note that MakeFrame does not have any timing restrictions yet because we have, for
simplicity, modeled it to be synchronous with the arrival of the SerialData signal from

98

Virtio Innovator - Design Creation Tutorial

Data_generator (Figure 14). For details, see Uar_Design_Example\uar_step3 in the
tutorial directory.

Version 4
Data Transfer in BITs (version 4)

The version 3 used a data-type abstraction of transmitting data in units of a BYTE. For
real-life devices, BITs of data is transmitted over an established serial link. We will
perform another data type refinement by sending and receiving frame data in units of a
BIT. We have defined BIT as a user-defined data type in user.h.

We choose to use a scheme very similar to Figure 12 to model transmission of BITs over
the serial link. The scheme is shown in Figure 15.

Figure 15: Parallel ↔ BIT Converters In Version 4 Of The UAR Design

In the Data_generator shown above, we modify the Send_data module connected to
clock cg2 to perform a parallel data-to-BIT conversion.

Note: In version 3 of the design, Send_data module with clock cg2 did parallel data-
to-BYTE conversion (Figure 13(a)).

In the Uar_receiver, we add a UAR that is essentially a BIT-to-BYTE converter as a
front-end to it. The BYTE data output by UAR is then sent to the previously designed
MakeFrame (BYTE-to-Parallel data converter) for further consumption.

99

Printed Documentation

Figure 16: Send_data Unpacks FrameWidth And Transmits BITs
Parallel Data-to-BIT converter

We start by modifying the send_data module (Figure 13) to convert parallel data into
BITs and transmit it. Here, we can use the same pack template function to do the
conversion as shown Figure 16. Note that the only change from version 3 is that
FrameWidth is now unpacked as 32 separate BITs and stored in the bitbuf array.

The clock period of cg2 connected to send_data should be 80 clock cycles because each
bit is assumed to take 80 clock cycles for transmission. Also, the clock period of cg1 can
now be reduced to (151,352,320 + 80 = 151,352,400 clock cycles) because sending
BeginFrame signal takes the same time as transmission of 1 bit of data (80 clock cycles).

BIT-to-BYTE Converter (UAR)

There is one major change in the uar_receiver. We added a high-level model of a UAR
as front-end to the uar_receiver as shown in Figure 15. The UAR model converts 8-bit
information into a BYTE for consumption by the MakeFrame module. The rest of the design
remains unchanged.

The used model for the UAR is very simple as depicted in Figure 17. It simply waits for a
bit (as a payload of SerialData) to arrive. When the eighth bit arrives, it is packed into a
BYTE using the same pack function and sent to MakeFrame (as a payload of ParallelData
signal) for further processing as shown in Figure 17. Note that this model is untimed; it

100

Virtio Innovator - Design Creation Tutorial

has functional timing. For details about this version, see Uar_Design_Example\uar_step4
in the tutorial design directory.

Figure 17 UAR symbol (a) and Simplified model of a UAR (b)

Final version
Using UAR for Serial Data Reception (Final Version)

In this section, we will discuss the final version of the UAR design. First, the
Data_generator will be modified to become a high-level Universal Asynchronous
transmitter. It will send start-bits and stop-bits between characters (8-bit data) as
required by the UAR specification.

A circuit of components described at the register-transfer level (RTL) will now replace the
simplified UAR in the uar_receiver (version 4). A separate clock say RxClk will have to
drive the UAR because clocks are generated locally at each end of the transmission link
and therefore cannot be assumed to be locked. We will show that the receiver works

101

Printed Documentation

correctly only when its frequency/clock period nominally matches that of the transmitter
clock frequency/period.

Also, the MakeFrame module will be modified to receive information from the UAR about
whether a transmission error has occurred. If error occurs, it aborts processing of the
current video frame and waits for the next frame.

Data Generator as a Universal Asynchronous Transmitter

As required by the UAR specification, Data_generator will need to transmit possibly an
arbitrary number of 1s (1 is stop-bit) between transmission of any two characters. Also,
before starting transmission of a character, it will transmit the start bit 0. The UAR
specification is described in section Universal Asynchronous Receiver Specification.

For simplicity, we transmit a fixed sequence of 110 between transmission of two
characters although it could have been any random sequence like 10, 111110, etc. Also,
upon transmission of the last character/BYTE of a video frame information, we transmit
another fixed sequence of 111.

Such simplifications are acceptable because our intent is to test the final RTL level UAR
using the Data_generator. We do not intend to model any specific Universal
Asynchronous transmitter in this design.

RTL description of UAR

We start by modifying the symbol for UAR from version 4 (Figure 17(a)) into the one as
shown in Figure 18.

Figure 18: Symbol Of The RTL-Level UAR

The dIn pin is used to input the serial BIT data sent from a UART transmitter such as our
Data_generator. The receiver clock, say RxClk, connected to the clk pin of the UAR
synchronizes its operations. We will show while running a prototyping session later that
this receiver clock frequency has to be nominally the same as the transmitter clock
frequency for the UAR (receiver) to operate correctly.

To reset the UAR asynchronously, the gl_reset pin should be triggered. When a valid
byte/character is available in the 8-bit bus dOut, dReady pin is triggered with a BIT
payload set to 1. On the other hand, any reception error will be flagged by triggering of
the dError pin.

102

Virtio Innovator - Design Creation Tutorial

Based on the desired behavior of the UAR described above, we come up with the
following circuit shown in Figure 19.

Figure 19 - RTL description of UAR.

The details of all the components of this circuit will not be described here. A brief outline
of each sub-module of the UAR is as follows:

1. start_detect: This module deals with recognizing the beginning of a new
data frame. It basically identifies arrival of a stop-bit (0). When beginning of a frame
is identified, it sends a signal valid to control module; it also resets the flags
module so that all UAR flags are reset.

2. control: On receipt of valid signal from the start_detect, control module
switches to run mode. This module decides whether the UAR is idle or busy
processing.

3. counter: This counter generates a pulse every 8th clock cycle to input the
data (pin count8 is triggered). Thus, the data is guaranteed to be sampled in the
middle of the valid period as desired in the specification. Each bit of sampled data is
stored in serial-parallel shift register. On the last bit of the data frame (indicated by
triggering in the count72 pin), the shift register is not updated, i.e. count8 is not
triggered. Instead count72 triggering is used to determine if valid data is available in
the shift register.

4. ser_par_conv: This module is essentially a serial-parallel shift register. With
each triggering of count8 signal by the counter indicating that data can be sampled
at the middle of a valid period, the bit is shifted into the register. After 8 such shifts,

103

Printed Documentation

we have a byte of data. Whether this data is valid or not is decided by the flags
module below.

5. flags: When the last bit of the data frame is received, count72 port is
triggered indicate this. Then this module attempts to identify if a valid stop-bit (1)
has been detected. If it does not detect a valid stop-bit, it flags an error by sending
the dError signal with a BIT payload to 1. Otherwise, dReady is triggered.

A gl_reset signal is included so that the components can be brought into a known state
at the start of operations.

Clocking requirements of UAR

As decided earlier at the UAR specification, we will need to make the Receiver clock
connected to UAR to be eight times the bit rate. Since the bit rate is 1 bit/ 80 clock
cycles, so the Receiver clock period needs to be set to 10 clock cycles.

We could re-use an instance of the clkgen module (Figure 9) to drive the UAR. But since
we want the user of the UAR design to control the Receiver clock frequency/period, we
create another module called varclkgen. It is very similar to the clkgen module except
that its clock period is defined as a VS_INT and can be controlled from the test bench.
The default value of the clock period is set to 10 clock cycles.

MakeFrame to Handle Transmission Error

We modify MakeFrame module to handle any frame error indicated by the UAR. It is also
nice to be able to reset the module.

For this reason, three new pins are added: Enable, GetData, and ErrorData. When
ErrorData is triggered by the UAR, MakeFrame aborts processing of the current video
frame and waits until the beginning of the next frame. GetData indicates that a valid byte
is available in SerialData bus.

Controlling the Receiver

To enable the user to control the operations of the Receiver, we modify the Receiver.tb
Test Bench to add the following Test Bench controls:

Figure 20: New Test Bench Controls For Receiver

104

Virtio Innovator - Design Creation Tutorial

Clicking on the Run button shown above will start the UAR Receiver. Clicking Reset
button will cause the Receiver to reset asynchronously. Also, the value of the register
Test Bench control is the period of the Rx clock; this period can be increased or decreased
by using the arrow keys during a prototyping session.

To enable such control over the Receiver, we also create another control module called
recv_ctrl that is connected to an input signal called RecvData. Clicking on the buttons
above changes the value of RecvData signal. Correspondingly, the recv_ctrl module
generates correct signal values to do the desired operations on all the components.

Based on the description on above sub-sections, our final uar_receiver appears as
shown below in Figure 21.

Figure 21: Final Description Of The uar_receiver

105

Printed Documentation

Figure 22: uar_receiver Received The Second Video Frame

Now, when the prototyping session starts, the new Test Bench controls come up for the
Receiver. The user can independently control either the Data_generator or the
uar_receiver using the appropriate Test Bench controls.

Also, we can vary the clock period/frequency of the Receiver clock RxClk using the arrow
keys on the register Test Bench control of Receiver.tb Test Bench. It can be seen that if
the RxClk period/frequency is varied such that it does not match the transmission rate,
reception error will be issued by the UAR.

106

Virtio Innovator - Design Creation Tutorial

107

The Figure 22 shows both the Data_generator and the uar_receiver running; the
second frame has been received successfully and the transmission of the third frame is in
progress.

Summary

As illustrated in the UAR Design, MAGIC-C was used to specify a high-level system
design. The design was then refined in stages using various constructs of MAGIC-C, with
each stage showing a refinement in (a) data types (b) timing (c) communication protocol
and/or (d) modeling abstraction. MAGIC-C was employed to describe behavioral level
abstraction of components as well as doing RTL design.

The MAGIC-C Symbol was used extensively to show that it enables creation of self-
contained, re-usable components. Also, the Virtio Innovator’s Test Bench Builder tool was
used to create GUI-based custom control of the design. In particular, error conditions that
are not found easily by testing could be readily located in a prototype by dynamically
changing the receiver clock frequency by using Test Bench controls during a running
prototyping session.

Sample user-defined data types and functions were defined to demonstrate creation of
infrastructure for a simpler and more concise design.

109

Glossary
D

DRC: Design Rule Checker

DUT: Design Under Test

F
FSM: Finite State Machine

G
GUI: Graphical User Interface

I
IDE: Integrated Design Environment

L
LCD: Liquid Crystal Display

LED: Light Emitting Diode

M
MAGIC-C: (ANSI) C-based specification language, enriched with graphical extensions,

used as input in the Virtual Silicon integrated development environment.

R
RTL: Register Transfer Level

U
UAR: Universal Asynchronous Receiver

UI: User Interface

V
VCD: Value Change Dump

VS: Virtual Silicon

111

Index
_

__int64 .. 59

A

Adding delay and time in the model 74

H

Handling protocol refinement in MAGIC-C78

History .. 3

M

Matched Filter Design 67

Adding delay and time in the model ... 74

Data_generator Specification 70

Filter Specification 72

Handling protocol refinement in
MAGIC-C 78

Introduction 67

Matched Filter Specification 67

Specification of Matched Filter (initial
version) 70

Summary 82

System Partition 68

Using Reset in a MAGIC-C model 76

U

UAR Design 83

Adding Delay to Image_gen model
(version 2) 94

Basic Test Bench Framework 86

BIT-to-BYTE Converter (UAR) 102

BYTE-to-Parallel Data Converter 100

Change in Specification Noise Resistant
Behavior 86

Communication Protocol 87

Controlling the Receiver. 106

Data Transfer in BITs (version 4) 101

Data Transfer in BYTEs (version 3) 97

Data_generator as a Universal
Asynchronous Transmitter 104

Image Generator Specification 90

Introduction 83

MakeFrame to Handle Transmission
Error ... 106

Modified Clock Period Requirements . 100

Parallel Data -to-BYTE Converter 99

Parallel Data-to-BIT converter 102

Receiver Specification 92

Refinement Steps for the UAR
Framework 88

RTL description of UAR 104

Specification of UAR Framework (initial
version) 90

Summary 109

Universal Asynchronous Receiver
Specification 83

User-Defined Data Type Across Model
Interfaces 88

Using UAR for Serial Data Reception
(Final Version) 103

Using Reset in a MAGIC-C model 76

	Virtio Innovator - Design Creation Tutorial
	CONFIDENTIALITY NOTICE
	RESTRICTED RIGHTS LEGEND
	Trademarks

	Documentation Conventions
	History
	Step-by-Step Example
	Step-by-Step
	Example
	Introduction
	Starting a New Design Project
	Adding Processes to the Design
	Describing The Tester Process
	Describing the DUT Process
	Browsing Design Information
	Design Browser
	Signal Browser
	Connectivity Browser

	Setting the Environment for Compilation and Linking
	Setting the Project Specific Environment
	C++ Code Generation and Compilation
	Debugging the Design
	Single Stepping During a Prototyping Session
	Setting Breakpoints in a Prototype

	Tracing Signal Values
	Using the Waveform Viewer During a Prototyping Session
	Using the Waveform Viewer for Post-processing Analysis
	The Test Bench Concept
	Modify the Prototype for Use with a Test Bench
	Creating a Test Bench
	Running a Test Bench
	Symbols
	Creating Magic-C Symbols
	Modifying a Symbol or Its Implementation After Creation
	Using Magic-C Symbols
	Opening a Symbol or Its Implementation
	Symbol Implementation
	Symbol Instance
	Symbol Outline
	Opening a Symbol Implementation While Viewing a Symbol Instance
	Opening a Symbol Implementation While Viewing a Symbol Outline
	Opening a Symbol Outline While Viewing a Symbol Implementation
	Opening a Symbol Outline While Viewing a Symbol Instance

	Code Examples

	
	MAGIC-CCode Examples

	
	
	
	Introduction
	Creating Process Concurrency
	Reset: Bringing an FSM to an Initial State
	Starting and Stopping a Process
	Timers
	Generating Clock Signals Using the Clock Construct
	Generating a Clock Signal with a Duty Cycle of 30%
	Getting the Current Prototyping Time
	Synchronizing Data Transmission Using a Clock
	Synchronizing Data Transmission Between FSMs
	Clocked Magic-C Loops
	Do-While / Repeat-Until Clocked Loop
	Clocked WHILE Loop
	C-Style Clocked FOR Loop
	Interrupt
	Matched Filter Design

	
	Overview
	Introduction
	Matched Filter Specification
	System Partitioning
	Specification of Matched Filter (Initial Version)
	Data Generator Specification
	Filter Specification
	Adding Delay and Time to the Model
	Using Reset in a MAGIC-C Model
	Handling Protocol Refinement in MAGIC-C
	Summary
	UAR Design

	
	UAR Design
	Using MAGIC-C
	Introduction
	Universal Asynchronous Receiver Specification
	Change in Specification: Noise Resistant Behavior
	Basic Test Bench Framework
	Communication Protocol
	User-Defined Data Type Across Model Interfaces
	Refinement Steps for the UAR Framework
	Inital version
	Specification of UAR Framework (initial version)
	Image Generator Specification
	Receiver Specification
	Version 2
	Adding Delay to Image_gen model (version 2)

	Version 3
	Data Transfer in BYTEs (Version 3)
	Parallel Data-to-BYTE Converter
	BYTE-to-Parallel Data Converter
	Modified Clock Period Requirements

	Version 4
	Data Transfer in BITs (version 4)
	Parallel Data-to-BIT converter
	BIT-to-BYTE Converter (UAR)

	Final version
	Using UAR for Serial Data Reception (Final Version)
	Data Generator as a Universal Asynchronous Transmitter
	RTL description of UAR
	MakeFrame to Handle Transmission Error
	Controlling the Receiver

	Summary

	Glossary
	Index

