
 Packet Format

:2]

sData[8:0]

7:10]

6:18]

5:27]

,2] Reserved

,3] Count[1:0] Adr[1:0]
The Logical Layer
Data on the Rambus Channel moves in blocks. The size 
of these block-oriented transfers can be optimized to 
match the needs of each particular system. To implement 
this, the Rambus Channel defines a protocol with the fol-
lowing three types of packets:

• Request;
• Acknowledge;
• Data.

The combination of a request, an acknowledge, and a data 
packet constitute a transaction. The following types of 
transactions are defined:

• Read memory space;
• Write memory space;
• Read register space;
• Write register space;
• Broadcast write register space.

To ensure proper synchronization of all devices connected 
to the Rambus Channel, request, acknowledge and data 
packets all begin during even intervals (falling clock 
edge).
Request Packet

A request is issued by the master. Each request is, as 
depicted in Figure 7, six intervals long. There are ten bits 
per interval. A request contains:

• A start bit (Start);
• An opcode (Op[3:0]);
• An address (Adr[35:0]);
• A count (Count[7:0]).

The opcode specifies the type of data transfer to take 
place. Read and write operations are defined for both 

Figure 7: Request

Start Op[0]0 Adr[9

1

2

3

4

5

BuBusCtrl

Op[1] Op[3] Adr[1

Rsrv Adr[2

Op[2] Adr[3

Reserved Count[6,4

Reserved Count[7,5
Page 8
memory and register spaces. Each slave device contains 
configuration registers (in the register space) in addition 
to memory space. 

The 36-bit address specifies the first byte that is trans-
ferred. From 1 to 256 bytes can be moved with a single 
transaction, as specified by the 8-bit count field.
Acknowledge Packet

Upon receipt of a request, the addressed slave responds 
with an acknowledge. As shown in Figure 8, an acknowl-
edge is sent across the BusCtrl wire to the master. This 
may be concurrent with a data packet. 

Coding of the acknowledge packet is given in Table 1.

Table 1: Acknowledge Packet Encoding

Ack[1:0] Definition

00 Addressed slave does not exist

01 Okay; slave will respond to request 

10 Nack; slave busy, try request later

11 Reserved

Figure 8: Acknowledge Packet Format

BusData[8:0]BusCtrl

Ack[0]

Ack[1] *

0

1

* May contain a portion of a Data Packet

*



With the exception of broadcast writes, a transaction 
addresses only a single slave. Thus, slaves never arbitrate 
for use of the Rambus Channel.

Data Packet

Data packets contain 1 to 256 9-bit data bytes. Figure 9 
depicts the format of a data packet.

Read Transaction

The format of a read transaction is shown in Figure 10. 
After a request packet is issued, an acknowledge packet is 
returned a time AckDelay later. If the acknowledge is 
Okay, the read data packet is returned a time ReadDelay 

after the request packet. Both of these delay values are 
programmed into the configuration registers of all devices 
during system initialization.

Write Transaction

A write transaction is shown in Figure 11. As in the read 
transaction, the acknowledge packet is returned a time 
AckDelay after the request packet. If the acknowledge is 
Okay, the write data packet is transferred a time WriteDe-
lay after the request packet.

Depending on the address and count values, a small delay 
may be required between the data packet of the current 
transaction and the request packet of the next transaction 
for write transactions. This delay is the WritePipeDelay. It 
allows the Rambus device time to finish the previous 
operation before beginning the next.

Figure 9: Data Packet Format

BusData[8:0]BusCtrl

Data 0

Data 1

Data n-2

Data n-1

* May contain an Acknowledge Packet

*

*

*

*

*

Next
Request
Packet

Figure 10: Read Transaction Format

BusData[8:0]BusCtrl

Read
Request
Packet

Ack
Delay

Read-
Delay

Read-
Data

Ack

= Unused Bits

Figure 11: Write Transaction Format

Next
Request
Packet

BusData[8:0]BusCtrl

Write
Request
Packet

Ack
Delay

Writ-
eDelay

Write-
Data

Ack

= Unused Bits

Write
Pipe

Delay
Page 9


